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a b s t r a c t

The aimof this paper is to provide a consistent virtualwork formulation for thenonlinear andpostbuckling
analysis of steel frames at high temperatures. Central to this study is the derivation of the virtual work
terms for the thermal stage, in addition to those for the loading stage, based on the updated Lagrangian
formulation. The incremental stiffness equation derived for the beam element, considering both the
geometrical and thermal effects, is qualified by the rigid body test. The generalized displacement control
(GDC) method is adopted as the path-tracing scheme for postbuckling response. Eurocode-3 reduction
factors and transformed section method are both adopted for steel I-sections. Two loading cases are
studied. For structures loaded gradually under constant temperature, the critical or ultimate loading
strength is obtained from the load-deflection curve. For structures heated gradually under constant
loading, the critical or maximum temperature that can be sustained by the structure is computed.
Conclusions are drawn for the examples studied in this paper.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fire disaster is becoming a noticeable problem in populated
metropolitan areas, which is coupled by the increasing use
of steel structures. Compared with other structural materials,
such as concrete, steel has a high thermal conductivity, which
softens rapidly when the temperature reaches some values. Once
the critical state is reached, the structure may not collapse
immediately, but the overall structural safety may be seriously
affected. In this regard, how to simulate the behavior of steel
structures under a major fire is crucial to assessment of the
remaining strength of a damaged structure for rehabilitation for
further use.

Both fire resistance tests and numerical simulations methods,
particularly the finite element method, have been employed in
evaluating the fire resistance capability of steel structures and
components. The fire tests are generally costly and subject to
certain physical restraints, such as the furnace environment,
member constraints, and so on. In contrast, the finite element
method is generally versatile, by which various factors such as
non-uniform temperature distribution, geometrical and material
nonlinearities, etc., can be easily taken into account [1–6]. The
results obtained by a finite element program are often compared
with those from the fire tests. But this has been quite limited due to
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the restraint for preparing the specimens for use inside the furnace
and other physical restraints. To ensure the general applicability
of a finite element procedure, it is necessary to develop some
benchmark problems for which the solutions can be used as the
baselines [7].

There exists an abundant literature on the finite element
simulation of the behavior of steel frames in fire. Li and Jiang [8]
investigated the behavior of steel frames by considering the
material and geometrical nonlinearities, and the temperature
distribution across member sections. By using the generalized
Clough model, the tangent stiffness at high temperature can be
obtained and the effect of thermal strain is converted to equivalent
thermal loads at structural nodes. However, the geometric and
thermal stiffness matrixes were not qualified by the rigid body
test described in [9,10]. Iu et al. [11] used the energy method to
obtain the incremental force–displacement relationship, and the
Newton–Raphson method to study the nonlinear behavior of steel
frames with no protection cover. In their analysis, effects such
as large deformations, plastic hinges, and strain hardening are
included. Yin and Wang [5] used the ABAQUS program to analyze
the large deformation behavior of steel frames with different
constraints under the heating stage. The parameters considered
include the span length, uniform and non-uniform temperature
distributions, different loading conditions, rotation constraint, and
lateral buckling.

In this paper, a consistent virtual work theory is presented
for the nonlinear and postbuckling analysis of steel frames at
high temperatures. Central to this study is the derivation of
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Fig. 1. Plane section assumption for two-dimensional beam.

the virtual work terms for the thermal stage, in addition to
those for the loading stage, based on the updated Lagrangian
formulation. The incremental stiffness equation derived for the
steel beam, considering both the geometrical and thermal effects,
is qualified by the rigid body test. The transformed sectionmethod
is adopted to account for non-uniform temperature distribution
of the steel I-section. The generalized displacement control (GDC)
method [12] is adopted as the incremental-iterative scheme for
tracing the postbuckling behavior of structures. For structures
under constant temperature, the critical load is solved from the
load–deflection curve. For structures under constant loading, the
critical temperature is obtained from the temperature–deflection
curve.

2. Kinematics and statics of the beam

With the updated Lagrangian (UL) formulation, the last
configuration C1 is selected as the reference configuration for
setting up the equation of equilibrium for the beam element at the
current configuration C2. Based on the Bernoulli–Euler hypothesis
of plane sections remaining plane and normal to the centroidal axis
of the beam after deformation, the displacements increments ux
and uy of a generic point N at section x of the beam during the
incremental step from C1 to C2 are (Fig. 1):

ux = u − (y − q)v′, (1a)
uy = v (1b)

where u and v denote the displacements of the centroid at section
x, v′ the rotational angle at section x, and q the distance due to shift
of the centroid from C1 to C2 upon thermal rise,

q = yc −
h
2

(2)

inwhich yc denotes the distance of the centroid at C2 to the bottom
side of the section, and h is the section’s depth.

2.1. Strain and stress increments from C1 to C2

2.1.1. Strain increments
The updated Green strain increment 1εxx can be decomposed

into the linear and nonlinear components as follows:

1εxx = 1exx + 1ηxx (3)

inwhich 1exx denotes the linear component of the strain increment,

1exx = ux,x (4)

where a comma denotes differentiation with respect to the
following coordinate. By the use of Eq. (1a), the linear strain
component 1exx can be written as

1exx = u′
− (y − q)v′′. (5)

The nonlinear strain component of the strain 1ηxx is

1ηxx =
1
2
(u2

xx + u2
yx). (6)

By using Eq. (1b) and neglecting the first term in Eq. (6), the
nonlinear strain component 1ηxx can be written as

1ηxx =
1
2
v′2. (7)

Thus, the total strain increment 1εxx is

1εxx = u′
− (y − q)v′′

+
1
2
v′2. (8)

Similarly, the shear strain increment 1εxy can be decomposed
into the linear and nonlinear components as

1εxy = 1exy + 1ηxy. (9)
With the substitution of the displacements in Eq. (1), the linear
strain component 1exy can be shown to vanish,

1exy =
1
2
(ux,y + uy,x) = 0. (10)

Meanwhile, the nonlinear shear strain component 1ηxy is

1ηxy =
1
2
(ux,yux,x + uy,yuy,x) =

1
2
[−u′v′

+ (y − q)v′v′′
]. (11)

By combining Eqs. (10) and (11), the shear strain increment 1εxy
can be obtained as

1εxy =
1
2
[−u′v′

+ (y − q)v′v′′
]. (12)

2.1.2. Stress increments
The stress increment 1Sxx at a generic point of section x can be

expressed as

1Sxx =
1
1E(1εxx − εT ) (13)

in which 1
1E denotes the elastic modulus at C1 and εT the strain

increment induced by the temperature increment,

εT = α

[
2Tt + (y − q)

1Ta
h

]
(14)

in which 1Ta represents the temperature difference between the
top and bottom flanges at C2,

1Ta =
2Tb −

2Tt . (15)
According to Eq. (10), the shear stress increment 1Sxy simply
vanishes,

1Sxy = 0. (16)

2.2. Initial forces acting at C1

For a two-dimensional bean, the initial forces of each cross-
section, i.e., the axial force 1Fx, transverse shear 1Fy, and bending
moment 1Mz , can be related to the initial stresses existing on the
beam as

1Fx =

∫
1A

1τxxdA, (17a)

1Fy =

∫
1A

1τxydA, (17b)

1Mz =

∫
1A

y1τxxdA (17c)

where 1τxx and 1τxy denote that axial and shear (Cauchy) stresses,
respectively, and 1A denotes the cross-sectional area of the
beam.



Download English Version:

https://daneshyari.com/en/article/267879

Download Persian Version:

https://daneshyari.com/article/267879

Daneshyari.com

https://daneshyari.com/en/article/267879
https://daneshyari.com/article/267879
https://daneshyari.com

