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a b s t r a c t

On-line control strategy for structures subjected to earthquake actions is investigated. The general
control strategy consists of monitoring the incoming signal, analyzing it and recognizing its dynamic
characteristics, applying the control algorithm for the calculation of the required action, and finally
applying this action. Thus, the way in which the structure is controlled, and the algorithm that is used,
are based on the dynamic characteristics and the frequency content of the applied dynamic signal. The
procedure of selection of poles of the controlled structure,which is critical for the success of the algorithm,
is proposed in this paper. The proposed methodology transforms each consecutive part of the signal,
as well as the uncontrolled structure, to the complex plane and, depending on their relative positions,
and following specific rules, the desired poles of the controlled structure are calculated and adjusted
during the earthquake. According to those locations of poles, and using the pole placement algorithm,
the feedback matrix is estimated, and then the equivalent forces that should be applied to the structure
by the control devices, which are installed on the building, are calculated. Parametric simulations for
different dynamic loads and seismic actions are performed, for both single and multi degree of freedom
systems. From the numerical results it is shown that the above control procedure is efficient in reducing
the response of building structures, with a small amount of required control forces.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Innovative means of enhancing structural functionality and
safety against natural and manmade hazards are currently in
various stages of research and development. They can be grouped
into the following broad areas: passive control systems and active,
semi active, or hybrid control systems. The main subcategories
of passive control systems are the base isolation and the
passive energy dissipation systems. In general, such systems are
characterized by frequency shift and their capability to enhance
energy dissipation in the structural system, in which they are
installed. These devices generally operate on principles such as
frictional sliding, yielding of metals, deformation of visco-elastic
solids or fluids and fluids orificing. Active, semi active, and
hybrid control systems are a natural evolution of passive control
technologies. The use of active, semi-active and the combination
of passive, active or semi-active systems as a means to protect
the structures against seismic loads has received considerable
attention in the last few decades. The devices of this category are
part of an integrated system, with real time processing controllers
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(control algorithms) and sensors, all installed to the structure.
They act simultaneously with the excitation to provide enhanced
structural behavior for improved service and safety.

Over the past few decades various control algorithms and
control devices have been developed, modified and investigated
by various groups of researchers. The work of Yao, Yang,
Soong, Housner, Spencer, Symans, Kobori, Lu, Kurata, Renzi,
Reigles [1–21], is representative. While many of these structural
control strategies have been successfully applied, challenges
pertaining to cost, reliance on external power and mechanical
intricacy during the life of the structure have delayed their
widespread use.

One of themost suitable algorithms for controlling the structure
is the pole placement algorithm. Pole placement algorithms have
been studied extensively in the general control literature Sage,
Kwakernaak, Brogan, Ogata, Kwon, Kautsky, Laub [22–29]. The
application of the algorithm in structural control can be found
in the work of Martin, Wang, Meirovotch, Soong, Utku, and
Preumont [30–34].

In [35] a pole placement algorithm where the poles of
the structure are estimated based on the complex Fourier
characteristics of the incoming earthquake is proposed. In this
paper the procedure for estimation of the poles of the control
structure is extended and improved. The poles are calculated
on-line based on the important frequencies of seismic loading
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Nomenclature

The following symbols are used in this paper:

M Mass matrix of the structure;
C Damping matrix of the structure;
K Stiffness matrix of the structure;
E Location matrix for the earthquake;
Ef Location of control forces on the structure;
F Control forces on the structure;
td Time delay;
Fallowable Maximum capacity of the control device;
X Matrix of states of the system;
Y Matrix of the output states;
C Output matrix;
D Feed forward control force matrix;
v Noise matrix;
λi Eigenvalues or poles of the uncontrolled system;
λc,i Eigenvalues or poles of the controlled system;
fi Eigenfrequencies of the uncontrolled system;
ξi Damping ratio of the uncontrolled system;
G Feedback or gain matrix;
ωs,i Bandwidth of the unsafe zone;
ap Percentage of maximum value of the Fourier power

spectrum above which the frequencies are taken
into consideration;

Ip Percentage of participation of selected frequencies
to the power of the signal;

Ip,d Design percentage of participation of those selected
frequencies to the power of the signal;

ωo Eigenfrequency of single degree of freedom system;
uo,max Maximum response of single degree of freedom

system at resonance;
u1,max Maximum response of single degree of freedom

system moving its pole along a line with constant
damping;

u2,max Maximum response of single degree of freedom
system moving its pole along a cycle sector with
constant ω;

umax Maximum response of single degree of freedom sys-
tem for every location of its pole out of resonance;

x The ratio umax,1/uo,max;
ξc Equivalent damping ratio;
u1,R,max The maximum response at point R;
xd The desired ratio of further reduction of the

maximum response, u2,max/u1,R,max.

and equivalent damping. Furthermore, a dynamic control strategy
based on pole placement technique is proposed for application
to active or semi-active control systems installed in buildings
designed against seismic actions.

2. Control strategy of structures by a pole placement algorithm

The general control strategy consists of the following stages:
(i) the monitoring of the incoming signal, (ii) its FFT or wavelet
analysis for recognition of its dynamic characteristics, (iii) the
selection of poles of the integrated controlled system, (iv) the
application of the pole placement algorithm for the calculation of
the required actions, and finally, (v) accounting for the limitations
of the devices that are used, the application of these actions,
considering saturation effects and time delay. A flow chart of this
integrated control strategy is shown in Fig. 1.

The equation of motion of a controlled structural systemwith n
degrees of freedom ui, subjected to an earthquake excitation ag , is
given by Eq. (1).

MÜ(t) + CU̇(t) + KU(t) = −MEag(t) + Ef sat F(t − td) (1)

where M, C,K denote the mass, damping and stiffness matrices
of the structure, respectively, E, Ef are the location matrix for the
earthquake and the control forces on the structure, and sat F is the
saturated control force matrix, which is applied to the structure
with time delay td and is given by:

sat F(t − td) =


F(t − td), F(t − td) < Fallowable
Fallowable, F(t − td) ≥ Fallowable.

(2)

Fallowable is the maximum capacity of the control device. In the
state space approach the above Eq. (1) can be written as follows:

Ẋ(t) = AX(t) + Bgag(t) + Bf sat F(t − td)
Y(t) = CX(t) + Df sat F(t − td) + Dgag(t) + v.

(3)

The matrixes X,A, Bg , Bf are given by:

X =

[
U
U̇

]
2n×1

, A =

[
0 I

−M−1K −M−1C

]
2n×2n

,

Bg =

[
0

−E

]
2n×1

, Bf =

[
0

M−1Ef

]
2n×1

.

(4)

ThematrixesY, C,Df ,Dg , and v are the output states, the output
matrix, the feed forward control forcematrix, the excitationmatrix
and the noise matrix, respectively. We consider the case where
the output variables are the same as the states of the system
and there is no application of the control forces to the output
variables, so the matrixes C,D are the identity and zero matrix,
respectively. The noise matrix depends on the sensor we use to
measure the response of the system. The above equation can be
solved by the technique of delay differential equation, Shampine
and Thompson [36], or one can use the following transformation,
which is described by Cai et al. [37]:

Z(t) = X(t) +

∫
e−A(η+td)Bf F(t + η)dη. (5)

Then:

Ż(t) = AZ(t) + Bgag(t) + B(A)F(t)

B(A) = e−AtdBf .
(6)

The eigenvalues or poles of the uncontrolled system are given
by:

λi = −ξiωi ± jωi


1 − ξ 2

i (7)

where fi and ξi are the eigenfrequencies and the damping
ratio, respectively, which are obtained from the solution of the
eigenvalue problem. If a state space formulation is adopted, then
these eigenvalues are obtained directly from the eigenvalues of
matrix A:

det [λI − A] = 0 → λi = αi ± jβi. (8)

The representation of the poles in the complex plane is shown
in Fig. 2.

It is assumed that the control force F is determined by linear
state feedback:

F = −G1U − G2U̇ = −

G1G2

 [
U
U̇

]
= −GX. (9)

G is the gain matrix, which will be calculated according to the
desired poles of the controlled system. Replacing the force F into
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