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a b s t r a c t

In this paper the seismic response of short skew bridges with deck–abutment pounding joints is revisited.
The permanent deck rotations and transverse displacements of such bridges after the recent earthquake
in Chile created an incentive to revisit their non-conventional behaviour. A novel non-smooth rigid
body approach is proposed to analyze the seismic response of pounding skew bridges which involves
oblique frictional multi-contact phenomena. The coupling of the response, due to contact, is analysed in
depth. It is shown that the tendency of skew bridges to exhibit transverse displacements and/or rotate
(and hence unseat) after deck–abutment collisions is not a factor of the skew angle alone, but rather of
the plan geometry plus friction. This is expressed with proposed dimensionless criteria. The study also
unveils that the coupling is more pronounced in the low range of the frequency spectrum (short-period
excitations/flexible structures) and presents novel dimensionless response spectra for the transverse
displacements and rotations, triggered by oblique contact in a skew bridge subsystem. Despite the
complexity of the response, the proposed spectra highlight a clear pattern. The dimensionless rotations,
arising from contact, decline as the ratio of the structural versus excitation frequency increases and
become practically negligible in the upper range of the frequency spectrum. Finally, a pilot application
to a typical skew bridge is presented.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

This paper focuses on the seismic response of short skew
bridgeswith deck–abutment joints, while it derives from a broader
study [1–4] on the problem of earthquake-induced pounding in
bridges. The recent earthquake in Chile [5,6] has created an in-
centive to revisit the non-conventional behaviour of skew bridges.
As earthquake reconnaissance reports [7] indicate, skew bridges
often rotate in the horizontal plane, thus tending to drop off the
supports at the acute corners [8]. This behaviour is triggered by
oblique contact and results in coupling of longitudinal and trans-
verse response, binding in one of the obtuse corners and subse-
quently rotation in the direction of increasing the skew angle [8]
(see also Fig. 1). Despite the recorded evidence from previous
earthquakes which underline the importance of this mechanism,
as well as the empirical vulnerabilitymethodologies that acknowl-
edge skew as a primary vulnerability factor of bridges [9], there are
only a few analytical attempts to comprehend this mechanism.

One of the first contributionswasmade byMaragakis et al. [10],
motivated by extensive damage during the 1971 San Fernando [7]
earthquake. Maragakis et al. [10] focused on the interaction of
short skewbridgeswith the abutments and the resulting rigid body
rotational vibrations. In that study, the bridge deck was simulated
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with a rigid stick model and pounding with the abutments was
taken into account with a spring activated after the gap closure.
The analysis performed therein showed significant transverse
displacements at the end supports due to rotations. Planar rigid
body deck rotations were found to be primarily produced by
impact of the skew deck with the abutment and not by non-
symmetric (e.g. eccentricity in plan with respect to the centre
of mass) restoring characteristics of the substructure, or impact
between deck and wing walls. More than 20 years later, Abdel-
Mohti and Pekcan [11] compared detailed 3D finite element
modelling with simplified beam stick models of skew bridges and
argued that the beam stick model is capable of capturing the
coupling of the response and themainmodes of the bridge, at least
for moderate skew angles.

In their recent study, Saadeghvaziri and Yardani-Motlagh [12]
examined the seismic vulnerability of Multi-Span Simply-
Supported (MSSS) bridges. They marked that impact can impose
high shear demands on the bearings of MSSS skew bridges, rais-
ing their failure probability. The coupling of the response displace-
ments aswell as rotations, caused by skewdeck–abutment contact,
was also underlined by Bignell et al. [13]. Bignell et al. conducted a
series of push-over analyses with structural configurations repre-
sentative of typical Illinois bridges. The ultimate load capacity of a
bridge was reduced, due to the skew angle, up to nearly two thirds
compared to the corresponding non-skew bridge. In addition, the
presence of a skew angle introduced failuremechanisms unseen in
the non-skew case, e.g. abutment bearing failure. Maleki [14] stud-
ied single span skew bridges using a SDOF model in an attempt to

0141-0296/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2010.12.004

http://dx.doi.org/10.1016/j.engstruct.2010.12.004
http://www.elsevier.com/locate/engstruct
http://www.elsevier.com/locate/engstruct
mailto:ilias.dimitrakopoulos@gmail.com
http://dx.doi.org/10.1016/j.engstruct.2010.12.004


814 E.G. Dimitrakopoulos / Engineering Structures 33 (2011) 813–826

Notations

α skew angle (as defined in Fig. 2)
ag , ωg a length and a time scale of the excitation appropri-

ately selected as in [3]
üg ground acceleration, upper dots stand for differen-

tiation with respect to time.
W , L Width, Length of a bridge deck in plan (as defined in

Fig. 2)
δ gap size at rest
η0, η1 dimensionless skew ratio for frictionless and fric-

tional contact respectively, defined in Eq. (1)
ΛNi, ΛTi impulse in the normal and the tangential direction

of contact i respectively
3N , 3T the column vector of impulses ΛNi and ΛTi respec-

tively
λ, λN , λT , λH vector of the contact force, in the normal

direction (subscript ‘N ’) and the tangential direction
for sliding (subscript ‘T ’) and sticking (subscript ‘H ’)
contacts.

ri lever arms in the normal direction of contact i (Eqs.
(8))

rT lever arms in the tangential direction of contact i,
rT = Lcα/2

ω0, ω0x, ω0y translational angular frequency, subscripts ‘x’
and ‘y’ indicate the translational direction when is
needed

Ω0 rotational angular frequency
ξ viscous damping ratio
x, xm translational displacement in x–x direction, sub-

script ‘m’ stands for maximum
y, ym translational displacement in y–y direction, sub-

script ‘m’ stands for maximum
θ, θm planar rotation around the vertical axis, subscript

‘m’ stands for maximum
q vector of the relative to the ground displacements,

qT
= (x y θ)

u vector of the relative to the ground velocities (q̇ = u
holds almost everywhere)

Tm mean period. Tm =
∑

i


C2
i /fi


/
∑

i C
2
i where Ci are

the Fourier amplitudes of the accelerogram and fi
the discrete Fourier transform frequencies between
0.25 and 20 Hz.

h vector of the non-impulsive forces
m, Im, M mass, rotational moment of inertia andmassmatrix

respectively
ρ radius of gyration
E identity matrix
εNi, ¯̄εN coefficient of restitution in the normal direction of

contact i and diagonal matrix: ¯̄εN = diag {εNi}
µi, ¯̄µ coefficient of friction of contact point i and diagonal

matrix: ¯̄µ = diag {µi}
¯̄µG, ¯̄µH the ¯̄µmatrices for sliding (subscript ‘T ’) and sticking

contacts (subscript ‘H ’)
gNi relative distance of the potential contact i
γNi, γTi the velocities of contact i in the normal and the

tangential direction of respectively
γN , γT vector of contact velocities γNi and γTi
γNA, γNE the contact velocities vector before (subscript ‘A’)

and after (subscript ‘E’) contact in the normal
direction

γTA the tangential contact velocity vector before
γTE = γTR − γTL the tangential post-contact velocity vector,

which is decomposed into thepositive (subscript ‘R’)
and negative (subscript ‘L’) part

γ̇H = γ̇HR − γ̇HL the tangential contact acceleration vector of
the sticking contacts, which is decomposed into the
positive (subscript ‘R’) and negative (subscript ‘L’)
part

WN ,WT direction matrices in the normal (subscript ‘N ’) and
the tangential (subscript ‘T ’) direction of contacts

WH ,WG direction matrices of the potentially sticking con-
tacts (subscript ‘H ’) and sliding contacts (subscript
‘G’)

WQ the abbreviationWQ = WN + WG ¯̄µG + WT ¯̄µT
( )T denotes the transpose matrix
3D Three Dimensional
C.M. Centre of Mass
MSSS Multi-Span Simply-Supported
PGA Peak Ground Acceleration
SDOF Single Degree of Freedom
MDOF Multi Degree of Freedom
LCP Linear Complementarity Problem

Fig. 1. Typical damage of overcrossings after the Chile earthquake of February 27,
2010.
Source: Taken from [5].

estimate the forces developed during collision. Lou and Zerva [15]
emphasized the need for more realistic spatially variable ground
motions when analysing the seismic response of a skew bridge
with deck–abutment joints.

Meng et al. [16,17] examined the torsional effects introduced in
short skew bridges by (accidental or other) eccentricity but did not
consider deck–abutment contact. The most relevant conclusion of
these studies [18,16], to the present work, is that the rotation of
skew bridgeswith high rotationalΩ0 to translationalω0 frequency
ratios (Ω0/ω0) may be less sensitive to the deck-aspect ratio
Width/Length = W/L and the skew angle α (Fig. 2).

Some of the salient features of the rotational mechanism
associated with the deck–abutment collisions of skew bridges
were brought forward in [2]. Studying the oblique impact of a
planar skew rigid body against an inelastic half-space (Fig. 2),
that study revealed that what matters during full-edge impact is
the total geometry of the (skew) deck in plan. In particular the
dimensionless skew ratio η0 and η1 for frictionless and frictional
impact respectively are important:

η0 =
sin 2α
2 (W/L)

, η1 = η0


1 +

µ

tanα


(1)

When η0 < 1 (Fig. 2-top) the angular momentums r1ΛN1 and
r2ΛN2 of the two impulses ΛN1 and ΛN2 are in different directions
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