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a b s t r a c t

Difficulty in imposing essential boundary conditions in the standard element-free Galerkin method (EFG)
is due to the lack of Kronecker’s delta function property of shape functions generated by moving least
square approximation (MLS). In this paper, we further apply a meshfree model based on the moving
Kriging interpolation method (MK) to free vibration analysis of first-order shear deformable plates.
The deflection and two rotation field variables of plate are approximated by the MK method, which is
employed to construct the shape functions having the delta function property. With this approach, the
drawback in enforcement of the boundary conditions caused by the MLS is now avoided. The present
formulation is based on the first-order shear deformation plate theory (FSDT) associated with an effective
elimination of the shear-locking phenomenon completely, and hence the approach is applicable to both
moderately thick and thin plates. Numerical examples considering various aspect ratios and different
boundaries are examined and solutions on natural frequencies obtained by the present method are then
compared with existing reference solutions, and very good agreements are observed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Plate structures have been intensively used in a variety of
engineering disciplines involving civil engineering, automobiles,
aerospace, construction sectors, marine, naval, etc., but a thorough
understanding of their vibration characteristics is of great impor-
tance to engineers and designers making sure reliability in design
procedure. The great majority of solutions existing for the flexural
vibration of plates at the beginning are based on the classical Kirch-
hoff assumption [1] which neglects the transverse shear deforma-
tion of the plates during the process, and the rotary inertia terms
are also ignored. The absence of those characteristics firmly leads
to the overestimation of the plate frequencies and significant errors
are increased when the thickness-span ratio is increased. A sub-
stantial development of plate theory, taking into account the effect
of such transverse shear deformation and rotary inertia, was pro-
posed by Reissner [2,3] for the first-order shear deformable theory
(FSDT). Mindlin [4–6] later presented a variational approach deriv-
ing the governing plate equation for free vibration of the FSDT in-
corporated the rotary inertia effect. Obtaining analytical solutions
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for free vibration problems of Reissner–Mindlin plates is more
difficult due to more governing equations and kinetic parame-
ters involved [7–14]; thus, approximate solutions with a high level
of accuracy using numerical computational approaches are indis-
pensable.

Many numerical methods have been introduced and success-
fully applied to free vibration analysis of Reissner–Mindlin plates
such as Rayleigh method [15], Rayleigh–Ritz methods [16–20], pb-
2 Rayleigh–Ritz methods [21,22], spline strip method (SSM) [23],
finite strip method (FSM) [24,25], spline finite strip method
(SFSM) [26–28], boundary element method (BEM) [29], general-
ized differential quadrature method (GDQ) [30,31], discrete singu-
lar convolution (DSC)method [32–37], DSC-Ritzmethod [38], finite
element method (FEM) [39–42], etc.

Although these numerical methods have been demonstrated
accurately and efficiently in solving such plate vibration problems,
their disadvantages are always present for each approach and
they still have some limitations in engineering applications.
As stated in [36], the structural computations are generally
accomplished by employing either global or local methods. The
global approach such as Rayleigh, Rayleigh–Ritz, GDQ is highly
accurate but often cumbersome in treatment of general boundary
conditions and complex geometries, and in contrast, the SSM,
FSM, SFSM, etc., standing for the local ones, which are easy
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to deal with complex geometries and discontinuous boundary
conditions but their accuracy is relatively low compared with
that of the global ones. Sometimes, the convergence in terms
of the local approach is slow and expensive for short waves,
i.e. high-order eigenmodes [43]. Recently, the DSC and DSC-Ritz
methods have shown some advantages in accuracy and flexibility
compared to those previously presented such as can handle
complex geometry and boundary conditions, and vice-versa, the
Rayleigh–Ritz method is difficult to choose the appropriate trial
functions for complicated problems. The BEM is also very difficult
to find an appropriate fundamental solution for complicated
problems and in fact, the FEM is really effective, flexible and one of
the most popular methods for engineering applications nowadays
but there are some problems related to meshing, distortion,
discontinuities and so on. In recent years, a promising numerical
technique emerging alternatively named meshfree or meshless
method, e.g. see [44–48], has been introduced and shown some
advantages superior over the traditional numerical methods. The
common concepts of elements or meshing used in the FEM are no
longer required in meshfree methods, and only nodes scattered in
the domain of problems is used for approximating field variables
instead.

Meshless methods have been successfully applied to plate
problems in recent years. Thin plates based on Kirchhoff’s
assumption have been analyzed by the element-free Galerkin
(EFG) method [44,49], the meshless local integral equation
method [50,51] and the meshless local Petrov–Galerkin (MLPG)
method [52], just to name a few. In a similar manner, the
reproducing kernel particles method (RKPM) [53], the MLPG
method [54–57], the EFG method [44,58,59], the meshless radial
point interpolation method (RPIM) [60], and many other variants
have also been applied to the analysis of Reissner–Mindlin plates
with a moderate thickness. An important phenomenon when
using thick plate theories to analyze thin plates is shear-locking.
The derivation of the shear-locking in the Reissner–Mindlin
plate formulation due to either inability in the approximation
functions to reproduce the Kirchhoff mode or the incapability
of numerical methods to achieve pure bending exactness in the
approximation [61]. The techniques eliminating this shear-locking
have beenwell developed in the FEM, e.g., see [62–65], and various
approaches have also been proposed in meshfree methods, for
instance, higher-order basis functions are employed in h-p cloud
method [66]; a stabilized conforming nodal integration technique
is applied to both the moving least square (MLS) and reproducing
kernel (RK) approximations [61]; using approximation functions
for rotational degrees of freedom (DOF) as the derivatives of
the approximation function for translational DOF has also been
introduced to resolve the shear-locking [67,68]. In this paper, the
technique proposed by Kanok-Nukulchai and his co-workers [68]
is applied to our present formulation to eliminate the shear-
locking.

Most meshfree methods have the same problems in imposing
essential boundary conditions because of the lack of Kronecker’s
delta property functions of shape functions. The imposition of
prescribed values is thus not as straightforward as done in
the FEM. For this reason, many efforts have been devoted and
some of special techniques have been proposed to overcome
such difficulty in various ways e.g. Lagrange multipliers [45],
penalty methods [44,69], or coupling with the FEM [70–73],
etc. The present formulation possesses the delta property and is
thus capable of avoiding such shortcoming completely. The MK
technique associated with the EFG method was first presented
by Gu [74] for solving a simple problem of steady-state heat
conduction. Further developments of the method can be found,
respectively, for two-dimensional plane problems [75,76], shell
structures [77], static deflections of thin plates [78], piezoelectric

Fig. 1. Geometric notation of a Reissner–Mindlin plate.

structures [79], dynamic analysis of structures [80] and buckling
and bending of orthotropic plates [81].

The main objective of the paper is to further apply the
meshfree moving Kriging interpolation method to the eigenvalue
analysis of Reissner–Mindlin plates, which has the delta function
property and free of shear-locking. In the following, meshless
formulation for free vibration analysis of Reissner–Mindlin plates
is presented in the next section presenting a brief description of
governing equations and their weak form, and approximation of
field variables as well as the discrete equation systems. Numerical
results on natural frequencies obtained by the present approach
for square and circular plates are investigated and discussed in
detail.

2. Meshless formulation for free vibration of plates

2.1. Governing equations and weak form

Consider a Reissner–Mindlin plate as depicted in Fig. 1 with the
plate thickness t , two-dimensional mid-surface Ω ⊂ ℜ

2, bound-
ary Γ = ∂Ω and transverse coordinate z. The Reissner–Mindlin
theory does not demand the cross section to be perpendicular to
the neutral plane after deformation. Consequently, the displace-
ments u and v parallel to the undeformed neutral surface at a dis-
tance z from the neutral plane can be defined by [53]

u = zβx(x)
v = zβy(x)

(1)

with x = [x, y]T and independent angles βT
= [βx, βy] ∈

(H1
0 (Ω))2, where βx(x) and βy(x) are defined by section rotations

of the plate about the y- and x-axes, respectively. The vertical
deflection of the plate is represented by the deflection at the
neutral plane of the plate denoted by w(x) ∈ H1

0 (Ω). Thus, the
vector of the displacements can be expressed asu

v
w


=

0 z 0
0 0 z
1 0 0

 
w
βx
βy


= Luu (2)

where the basic assumption for the displacement vector of three
independent field variables u ∈ H1

0 (Ω) × (H1
0 (Ω))2 is

uT
= [w, βx, βy]. (3)

In this work, the material is assumed to be linear elastic and
isotropicwith Young’smodulus E and Poisson’s ratio ν, the govern-
ing differential equations of the free vibration Reissner–Mindlin
plates can be presented in a strong form as [39,40]

∇ · Dbκ(β) + λtγ +
t3

12
ρω2β = 0 in Ω ⊂ ℜ

2 (4)

λt∇ · γ + ρtω2w = 0 in Ω (5)

w = w0; β = β0 on Γ = ∂Ω (6)
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