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a b s t r a c t

Vibrations of non-uniform and functionally graded (FG) beams with various boundary conditions and
varying cross-sections are investigated using the Euler–Bernoulli theory and Haar matrices. It is assumed
that the cross-section and material properties vary along the beam in the axial direction. The system
of the governing equations is transformed with the aid of a set of simplest wavelets. To validate the
present results, the non-homogeneity of the beams is discussed in detail and the calculated frequencies
are compared with those of the existing literature. The results show that the Haar wavelet approach is
capable of calculating frequencies for the beams with different shapes, rigidity, mass density, small or
large translational and rotational boundary coefficients. The advantage of the novel approach consists in
its simplicity, accuracy and swiftness.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In contemporary engineering conditions, the requirements
for structural materials and their properties are becoming more
stringent. This is particularly true for the materials which are
used in constructional elements or assembly units and are
utilized in extremely severe environment or adverse exploitation.
Nevertheless, traditional means for improving characteristics and
performance of natural materials are depleted. Therefore, an
increasing interest in composite materials and the materials
with gradients in composition is evident. The tendency is also
provoked by economical aspects: extraction and processing of
natural resources is limited and expensive.

FG materials withstand high temperatures and resist corro-
sion. On account of comparatively good fracture toughness, FG
materials are less exposed to delamination or cracking in compar-
ison to uniform or homogeneous beams; therefore, FG materials
have been under important consideration among engineers in re-
cent decades. A detailed overview of the advanced materials, their
development, elemental composition, microstructure, properties,
design and application are described in [1] by Byrd. A more com-
prehensive research on thermoelastic behaviour of FG structures
was first conducted by Chakraborty et al. in 2003 yet. Static, free
vibrations andwavepropagationwere investigatedby the beamel-
ement approachwhich required an exact solution of the static part
of the governing differential equations [2]. Aydogdu and Taskin
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studied free vibrations of simply supported FG beams with the
aid of classical beam theory, parabolic and exponential shear de-
formation beam theories. The governing equations were found by
the Navier type solution [3]. A unified approach for analysing both
static and dynamic behaviour of FG beams was proposed by Li
extending the Timoshenko beam theory [4]. A fundamental fre-
quency analysis using different higher-order beam theories was
carried out by Simsek [5]. In 2010, Alshorbagy et al. suggested FEM
for calculating dynamic characteristics of FG beams with material
graduation in axially or transversally through the thickness based
on the power law [6]. The same method was applied by Shahna
et al. for stability analysis of FG tapered Timoshenko beam [7].
Xiang and Yang studied forced vibrations of a three-layer lami-
nated FG Timoshenko beamwith arbitrary end supports and vary-
ing thickness due to the applied heat [8]. Recently Simsek and
Kocatürk studied dynamic behaviour of FG simply-supported
beams under a concentrated moving harmonic load. The approach
was based on Lagrange’s equations [9]. Bending and vibration of
cylindrical beams with arbitrary radial non-homogeneity were in-
vestigated by Huang and Li [10]. A dynamic system with a mov-
ing mass was broadly studied by Simsek in [11,12], and Khalili
et al. [13]. A new approach for calculating free vibration of FG
beams with non-uniform cross-section area and varying physical
properties along its longitude was proposed by Huang and Li [14]
last year. The approach was based on the Fredholm integration
equation.

The analytical method for studying free vibrations of FG beams
was provided by Sina et al. [15] andMahi et al. [16] only a few years
ago. The equation of deflection was derived applying Hamilton’s
principle. The Galerkin method was employed to analyse free
vibration of sandwich beams with FG core in [17].
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Despite the variety of methods and approaches for analytical
and computational analysis of non-uniform and FG beams, no
simple and fast solutions applicable for both free and forced
vibrations in such beams with different boundary conditions and
varying cross-section area were proposed. Only few solutions are
found for the studies on the axially FG beams. Hereof, the purpose
of the present work is to introduce the Haar wavelet approach for
calculating natural frequencies in non-uniform and FG beams. The
paper is organized in five sections. Section 2 describes integration
of Haar wavelets. In Section 3, the problem and the solution are
stated. Various numerical examples can be found in Section 4. The
main conclusions are drawn in Section 5.

2. Integration of Haar wavelets

The Haar wavelet is one of the simplest wavelets which is
discontinuous and resembles a step function. In other words, the
Haar wavelets belong to the special class of discrete orthonormal
wavelets. The other wavelets generated from the same mother
wavelet form a basis whose elements are orthonormal to each
other and are normalized to unit length. This property allows
each wavelet coefficient to be computed independently of other
wavelets. The Haar wavelet family for ξ ∈ [0, 1] is defined as
follows:

hi(ξ) =

1 for ξ ∈ [ξ (1), ξ (2)
],

−1 for ξ ∈ [ξ (2), ξ (3)
],

0 elsewhere.
(1)

In (1), notations

ξ (1)
=

k
m

, ξ (2)
=

k + 0.5
m

, ξ (3)
=

k + 1
m

(2)

are introduced. Integer m = 2j (j = 0, 1, . . . , J) is the factor
of scale; k = 0, 1, . . . ,m − 1 is the factor of delay. Integer
J determines the maximal level of resolution. Index i in (1) is
calculated as i = m + k + 1; the minimal value for i is one (if
j = 0, then m = 1, k = 0); the maximal value of i is 2M , which is
2J+1. If index i is equal to one, the corresponding scaling function
is h1(ξ) = 1 if ξ ∈ [0, 1], and h1(ξ) = 0 elsewhere.

In [18], the Haar coefficient matrix H(2M×2M)(i, l) = hi(ξl) is
introduced; the collocation points are defined as:

ξl =
l − 0.5
2M

, l = 1, 2, . . . , 2M. (3)

For further studies, the integrals of the wavelets

pα,i(ξ) =

∫ ξ

0
pαi−1,i(ξ)dξ (4)

are required. In (4), p0,i(ξ) = hi(ξ). These integrals are calculated
analytically [19]. In case i = 1, the integral of the wavelet is
pα,1(ξ) = ξα/α!, and in case i > 1 is

pα,i(ξ) =



0 for ξ < ξ (1),
1
α!


ξ −

k
m

α

for ξ ∈ [ξ (1), ξ (2)
],

1
α!

[
ξ −

k
m

α

− 2(ξ − ξ (2))α
]

for ξ ∈ [ξ (2), ξ (3)
],

1
α!

[
ξ −

k
m

α

− 2(ξ − ξ (2))α + (ξ − ξ (3))α
]

for ξ > ξ (3).

(5)

Values pα,i(0) and pα,i(1) should be calculated in order to satisfy
the boundary conditions. Evaluating integrals (5) in the collocation
points, the following form could be obtained

P (α)(i, l) = pα,i(ξl), (6)
where P (α) is a 2M×2M matrix. It should be noted that calculations
of matrices H(i, l) and P (α)(i, l) must be carried out only once.

3. Problem statement and method of solution

Consider an axially graded Euler–Bernoulli beamwith a variable
cross-section of length L. In the present study, it is assumed
that the material properties and cross-section of the beam vary
continuously along the length. Introducing the quantities:

ξ =
x
L
, k4 =

ρ0A0ω
2L4

E0I0
, (7)

the equation of motion for transverse vibrations is given by

d2

dξ 2

[
E(ξ)I(ξ)

d2W (ξ)

dξ 2

]
− k4m(ξ)W (ξ) = 0, ξ ∈ [0, 1], (8)

where W (ξ) is the transverse deflection, m(ξ) = ρ(ξ)A(ξ) is
the mass at position ξ , E(ξ)I(ξ) = D(ξ) is the bending stiffness;
ρ(ξ) is the mass density of the beam material, E(ξ) is the Young’s
modulus, A(ξ) is the cross-section area and I(ξ) is the moment of
inertia at ξ . In (7), k is the dimensionless natural frequency, and
ρ0, A0, E0, I0 denote the values of ρ, A, E, I at ξ = 0, respectively.
In the present study, it is assumed that functions E(ξ) and I(ξ)have
derivatives up to the second order. From (8), it yields that

d4W (ξ)

dξ 4
E(ξ)I(ξ) + 2

d3W (ξ)

dξ 3

[
dE(ξ)

dξ
I(ξ) +

dI(ξ)

dξ
E(ξ)

]
+

d2W (ξ)

dξ 2

[
d2E(ξ)

dξ 2
I(ξ) + 2

dE(ξ)

dξ
dI(ξ)

dξ
+

d2I(ξ)

dξ 2
E(ξ)

]
− k4W (ξ)ρ(ξ)A(ξ) = 0, ξ ∈ [0, 1]. (9)

For a general case, the solution of (9) is not available. According
to [18,19], a highest-order derivative is expanded into the Haar
series instead of solving the differential equation. Therefore, it is
assumed that the fourth derivative of the solution (9) is sought in
the following form:

W IV (ξ) =

2M−
i=1

aihi(ξ), (10)

where ai are unknown wavelet coefficients. Integrating (10) four
times and taking into account (4) and (5), we obtain

W ′′′(ξ) =

2M−
i=1

aip1,i(ξ) + W ′′′(0),

W ′′(ξ) =

2M−
i=1

aip2,i(ξ) + W ′′′(0)ξ + W ′′(0),

W ′(ξ) =

2M−
i=1

aip3,i(ξ) +
1
2
W ′′′(0)ξ 2

+ W ′′(0)ξ + W ′(0),

W (ξ) =

2M−
i=1

aip4,i(ξ) +
1
6
W ′′′(0)ξ 3

+
1
2
W ′′(0)ξ 2

+ W ′(0)ξ + W (0).

(11)

In (11), quantities W (0),W ′(0),W ′′(0),W ′′′(0) can be evaluated
from the boundary conditions. In the present work, the following
boundary conditions are considered:

(i) Cantilever beams (CF)
In this case, one end ξ = 0 is clamped, while the other end

ξ = 1 is free. The boundary conditions for the beam are W (0) =
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