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a b s t r a c t

This paper presents a detailed analysis of the influence of boundary conditions and axial deformation
on the critical buckling loads of the geometrically perfect elastic two-layer composite columns with
interlayer slip between the layers. An investigation is based on the extension of our preliminary analytical
study of slip-buckling behavior of two-layer composite columns. It is proved that the boundary conditions
of composite columns with interlayer slip are interrelated in longitudinal and transverse directions. The
parametric analysis reveals that the influence of different longitudinal boundary conditions on critical
buckling load is significant and can be up to 20%, while, on the other hand, the influence of axial
deformation is negligible.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the applications of composite layered systems
in automotive, aerospace, mechanical, and structural engineer-
ing industries have increased tremendously. The main advantages
of composite systems over the conventional structures are their
high strength-to-weight and stiffness-to-weight ratios. However,
their mechanical behavior is considerably affected by the type of
the connection between the constituents. For instance, in some
widely used composite structures in civil engineering, such as
nailed, glued or bolted layered wood systems, wood–concrete or
steel–concrete systems, an absolutely stiff connection between
the layers can hardly be realized in practice. As a result an inter-
layer slip between the layers develops, which can, if it has a suf-
ficient magnitude, significantly affect the mechanical behavior of
the composite system.
Therefore, the interlayer slip has to be taken into consideration

in what is called partial interaction analysis of composite struc-
tures. Several researches have pursued the effect of partial com-
posite action in the analysis of the abovementioned structures, and
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as a result, many published papers that take into account the inter-
layer slip analytically or numerically are available in the literature.
No attempt is made to discuss it here, but the interested reader
is referred to, e.g., Adam et al. [1], Dall’Asta and Zona [2], Battini
et al. [3], Čas et al. [4–6], Chen et al. [7], Silva and Sousa [8], Heuer
and Adam [9], Heuer [10], Challamel [11], Ranzi and Bradford [12],
Ranzi and Zona [13], Ranzi [14], Schnabl et al. [15–17], and Xu and
Wu [18].
Design of structures is often based on strength and stiffness con-

siderations. However, a structure may become unstable long be-
fore strength and stiffness criteria are violated. Therefore, buckling
is an important consideration in structural design, especially when
the structure is slender and lightweight. Thus, it is of practical im-
portance to obtain the analytical solutions for such problems.
There are relatively few analytical investigations of slip-buck-

ling problem of composite columns with interlayer slip, and to
date, only a few exact models have been developed. Rassam and
Goodman [19] derived a simplified solution of buckling behavior
of three layered wood columns with both equal and unequal layer
thicknesses. Another analytical solution of buckling problem was
derived by Girhammar and Gopu [20]. An extension and general-
ization of the latter theory is presented in Girhammar and Pan [21].
Recent papers by Xu and Wu [18,22,23] have presented an inter-
esting approach to the solution of slip-buckling and vibration prob-
lem of composite beam–columnswhen shear deformation is taken
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into account. If shear deformation is neglected, the equations for
buckling load obtained by Xu and Wu [18,22,23] are the same as
those presented by Girhammar and Pan [21]. The aforementioned
solutions are based on what is called ‘‘second-order theory’’ and
in Girhammar and Pan [21] also on approximate buckling length
coefficients. As it is well known, this theory neglects the influence
of axial deformability on the critical buckling loads. Very recently,
Kryžanowski et al. [24] have proposed a slip-buckling analytical
model inwhich the effect of axial deformability on critical buckling
forces is considered while, on the other hand, the effect of shear
deformation is neglected. The comparison of the critical forces
with those of Girhammar and Pan [21] has shown a disagreement,
which, unfortunately has not been explained in detail because only
a preliminary parametric study was conducted at that time.
To complement the aforementioned studies, themain objective

of the present paper is to clarify the reasons for disagreement be-
tween the results of Kryžanowski et al. [24] and those of Girham-
mar and Pan [21]. For this purpose, equivalently as in Kryžanowski
et al. [24], a linearized stability theory is employed [25]. Hence,
critical buckling forces are determined from the solution of a linear
eigenvalue problem, i.e., detK = 0; see, e.g. [26].
In the numerical examples critical buckling loads are compared

to those of Girhammar and Pan [21]. Based on the derived results,
the reasons for the disagreement between themodels are clarified.
Afterwards, a parametric study is conducted in order to illustrate
how the critical buckling loads of geometrically perfect two-
layer composite columns are affected by axial deformability and
different arrangement of end supports. In particular, it is examined,
how these effects are influenced by the interlayer slip modulus, K ,
and column slenderness, λ.

2. Problem formulation

Consider a geometrically perfect initially straight, planar, two-
layer composite column of undeformed length L. Layers, as shown
in Fig. 1, are marked by letters a and b. The column is placed in
the (X, Z) plane of spatial Cartesian coordinate system with coor-
dinates (X, Y , Z) and unit base vectors EX , EY and EZ = EX × EY .
The undeformed reference axis of the layered column is common
to both layers and is defined as an intersection of the (X, Z)-plane
and their contact plane. It is parametrized by the undeformed arc-
length x. Local coordinate system (x, y, z) is assumed to coincide
initially with spatial coordinates, and then it follows the deforma-
tion of the column. Thus, xa ≡ xb ≡ x ≡ X, ya ≡ yb ≡ y ≡ Y , and
za ≡ zb ≡ z ≡ Z in the undeformed configuration. The two-layer
composite column is loaded longitudinally at the free end by an
axial conservative compressive force, P , in such way that homoge-
neous stress–strain state of the column at its primary configuration
is achieved. For further details an interested reader is referred to,
e.g., [17,24].

2.1. Kinematic equations

The deformed configurations of the reference axes of layers a
and b are defined by vector-valued functions (see Fig. 1)

Ra0 = X
aEX + Y aEY + ZaEZ = (xa + ua)EX + yaEY + waEZ ,

Rb0 = X
bEX + Y bEY + ZbEZ = (xb + ub)EX + ybEY + wbEZ ,

(1)

in which superscripts a and b indicate that quantities are related
to layers a and b, respectively. Functions ua and wa denote the
components of the displacement vector of layer a at the reference
axis with respect to the base vectors EX and EZ . Similarly, functions
ub and wb are related to layer b. The geometrical components
ua, wa, ub, and wb of the vector-valued functions Ra0 and Rb0 are
related to the deformation variables by the following equations,
see, e.g. [27]:

layer a:

1+ ua′ − (1+ εa) cosϕa = 0,

wa′ + (1+ εa) sinϕa = 0,

ϕa′ − κa = 0,

(2)

layer b:

1+ ub′ − (1+ εb) cosϕb = 0,

wb′ + (1+ εb) sinϕb = 0,

ϕb′ − κb = 0.

(3)

Here, the prime (′) denotes the derivative with respect to x. In
Eqs. (2)–(3), the deformation variables εa and εb are extensional
strains; κa and κb are pseudocurvatures; while ϕa and ϕb are
rotations of layers’ reference axes [28].

2.2. Equilibrium equations

The composite column is subjected longitudinally to a conser-
vative compressive force P at the free end. In addition, each layer of
the two-layer composite column is subjected to interlayer contact
tractions, measured per unit of layer’s undeformed length, which
are defined by

pa = paXEX + p
a
ZEZ = (p

a
t cosϕ

a
+ pan sinϕ

a)EX
+ (pan cosϕ

a
− pat cosϕ

a)EZ ,

pb = pbXEX + p
b
ZEZ = (p

b
t cosϕ

b
+ pbn sinϕ

b)EX
+ (pbn cosϕ

b
− pbt cosϕ

b)EZ ,

(4)

where pat , p
b
t , p

a
n, and p

b
n are tangential and normal components of

the interlayer contact tractions, see Fig. 1. Hence, the equilibrium
equations of an individual layer are, see e.g. [6,27]:
layer a:

Ra′X + p
a
X = R

a′
X + p

a
t cosϕ

a
+ pan sinϕ

a
= 0,

Ra′Z + p
a
Z = R

a′
Z − p

a
t sinϕ

a
+ pan cosϕ

a
= 0,

Ma′Y − (1+ ε
a)Qa = 0,

(5)

layer b:

Rb′X + p
b
X = R

b′
X + p

b
t cosϕ

b
+ pbn sinϕ

b
= 0,

Rb′Z + p
b
Z = R

b′
Z − p

b
t sinϕ

b
+ pbn cosϕ

b
= 0,

Mb′Y − (1+ ε
b)Qb = 0,

(6)

where
N a
= RaX cosϕ

a
− RaZ sinϕ

a,

Qa = RaX sinϕ
a
+ RaZ cosϕ

a,

Ma
= MaY ,

N b
= RbX cosϕ

b
− RbZ sinϕ

b,

Qb = RbX sinϕ
b
+ RbZ cosϕ

b,

Mb
= MbY .

(7)

RaX , R
a
Z , R

b
X , R

b
Z , M

a
Y , and M

b
Y in (5)–(7) represent the generalized

equilibrium internal forces of a cross-section of layers a and b, re-
spectively, with respect to the fixed coordinate basis. On the other
hand, N a,Qa,Ma, N b,Qb and,Ma represent the equilibrium ax-
ial and shear internal forces and bending moments of the layers’
cross-sections with respect to the rotated local coordinate system.

2.3. Boundary conditions

Kinematic equations, Eqs. (2)–(3), and equilibrium equations,
Eqs. (5)–(6), constitute a system of 12 linear differential equations
of the first order with constant coefficients for 12 unknown
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