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a b s t r a c t

The basic equations of the Reissner and Mindlin plate theories are derived in an elementary way from
the underlying assumptions of the theories about the distribution of in-plane stresses in the Reissner
case and the distribution of displacement components in the Mindlin case. The derived equations include
a parameter which allows the interpretation of the theories as an approximation of isotropic plates or
transversally inextensible plates. Qualitative comportment between the theories is also given.
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1. Introduction

This short communication is motivated by the articles of Wang
et al. [1] and Batista [2] wherein the authors emphasize the practi-
cal importance of the Reissner andMindlin plate theories resulting
from their simplicity and notice that despite the fact that the the-
ories rely on different assumptions they are often treated as a sin-
gle theory, referred to as the Reissner–Mindlin plate theory. They,
among others, qualitatively describe the differences between the
theories and state that one difference between them is that the
Reissner plate theory was derived from the variational principle of
complementary strain energy. This is true for Reissner’s primary
derivation [3–5]; however, in his later paper [6] he abandoned
variational principles and showed how his equations may be de-
rived directly from elasticity equations by assumptions that the
transverse shear stresses are parabolic and that the sum of the in-
plane normal stresses is linearly distributed over the plate thick-
ness. How Reissner’s plate equations may be derived directly from
elasticity equations without using variational principles was, how-
ever, previously shown by Green ([7], 224–229), who used Reiss-
ner’s weighted displacements [5] and assumed that transverse
shear stress components are parabolically distributed across the
plate thickness. Variants of such derivation may be found in the
books of Timoshenko ([8], 168–171), Girkmann ([9], 583–591) and
Panc ([10], 34–41). How Reissner’s equation for an unloaded plate
may be derived without any special assumptions was recently
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shown by the present author [2]. Nevertheless, we may find state-
ments alluding to an intrinsic connection between Reissner’s plate
theory with variational principles even in contemporary books
(e.g. [11]).
As opposed to Reissner, who considered plate equilibrium,

Mindlin, who followed Uflyand [12], considered the vibration
of plates [13], and he derived his plate equations directly from
elasticity equations without using variational principles. The static
case of equations was previously deduced by Bolle [14] and the
case with variational principles was deduced by Hencky [15].
In what follows, the theories are visited one more time, show-

ing how the governing equations of the theories may be derived in
an elementary way. In the derivation of equations only the basic
assumptions of theories are retained: so in this paper the Reissner
plate theory means the theory for which the basic equations are
derived by assumption that the in-plane stresses are linearly dis-
tributed across the plate thickness, while the Mindlin plate theory
means the theory where the in-plane displacements are assumed
to be linearly distributed across the plate thickness.

2. The shear deformable plate theories

Governing elasticity equations. In describing a plate, a rectangu-
lar Cartesian coordinate system with coordinates (x, y, z) is used.
The coordinate z is perpendicular to the plane of the plate and the
plate faces are at z = ±h/2. For a plate in equilibrium the following
stress equilibrium equations must be satisfied:
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where σx, σy, σz , are the normal stress components, and τxy, τxz ,
τyz are the shear stress components. Here and in what follows the
symbol x � y on the right-hand side of an equation means that
the equation for the other coordinate is obtained by interchanging
x and y. Since we want to consider an elastic isotropic plate
as well as an elastic transversally inextensible plate, we write
the constitutive equations which connect the stress components
with the displacement components u, v, w in the following half-
inverted form:

∂w

∂z
=
ω

E

[
σz − ν

(
σx + σy

)] ∂u
∂z
+
∂w

∂x
=
τxz

G
(x � y) (2)

σx =
E

1− ν2

(
∂u
∂x
+ ν

∂v

∂y

)
+

νω

1− ν
σz (x � y)

τxy = G
(
∂u
∂y
+
∂v

∂x

)
(3)

where

ω =

{
0 transversally inextensible plate
1 isotropic plate (4)

and where E is the modulus of elasticity, ν is the Poisson ratio, and
G ≡ E/2 (1+ ν) is the shear modulus, assumed to be isotropic.
It is worthwhile mentioning that the transversally inextensible
plate was introduced by Kromm [16], but neither Reissner [3–5]
or Mindlin [13] discuss this possibility in their derivations.
The boundary conditions on the plate faces are

τxz (x, y,±h/2) = τyz (x, y,±h/2) = 0

σz (x, y,±h/2) = ±
p
2

(5)

where p ≡ σz (x, y, h/2) − σz (x, y,−h/2). The last of these
conditions is asymmetric with respect to coordinate z and defines
the pure bending of the plate. In this case the transverse
displacementw should be a symmetric function of z and, as follows
from the governing equations, the stress components σx, σy, σz , τxy
and the displacement components u, v are asymmetric functions
of z and the stress components τxz , τyz are symmetric functions
of z. Consequently, the stress components σx, σy, σz , τxy and the
displacement components u, v vanish at the plate middle plane,
z = 0.
On a high level the elastic state of the plate is described by the

stress resultants [8]

Mx ≡
∫ h/2

−h/2
σxzdz (x � y) Mxy ≡

∫ h/2

−h/2
τxyzdz

Qx ≡
∫ h/2

−h/2
τxzdz (x � y) (6)

where Mx, My are the bending moments, Mxy is the twisting
moment andQxz ,Qyz are the transverse shear forces, all on one unit
of length. By means of the definitions (6) and the face boundary
conditions (5), by integration of the stress equilibrium equation
(1) across the plate thickness, we obtain the well-known plate
equilibrium equations [8]:
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∂Mx
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+
∂Mxy
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∂Qx
∂x
+
∂Qy
∂y
= −p. (7)

The task of a shear deformable plate theory is now to find
an approximate solution of the elasticity equations (1)–(3) subject
to the face boundary conditions (5) which includes enough free
functions by which a prescribed plate’s edge boundary conditions
may be satisfied. Besides that, it is required that an approximate
solution satisfy the plate equilibriumequations (7). Inwhat follows
the superscripts R and M will be used to denote the Reissner and

Mindlin plate quantities, respectively. Also, the z coordinate is
normalized as follows:

ζ ≡
z
h/2
∈ [−1, 1] . (8)

Note 1. The requirement of the satisfaction of plate equilibrium
equations (7) is abandoned in some plate theorieswhere equations
are derived from the principle of virtual work [17]
Note 2. For the case p = 0 the exact solution of the stated

problem exists, which may be found by the method of symbolic
integration [18] or by the method of successive approximation [2].
Reissner’s plate theory. As stated in the introduction, the basic

assumption of Reissner’s primary theory of plates is that the in-
plane stresses are linearly distributed across the plate thickness
[3,4]. Thus, by using the definition of stress resultants (6), the in-
plane stress components may be written in the following well-
known form:

σ Rx =
6MRx
h2

ζ (x � y) τ Rxy =
6MRxy
h2

ζ . (9)

Bymeans of these expressions, by integration of the equilibrium
equations (1) with respect to z, use of the equilibrium equation
(7)2and plate face boundary conditions (5), we obtain the trans-
verse stress components:
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The displacement components may now be obtained by the
integration of constitutive equations (2) as is shown in [2].
However, Reissner at this point made another approximation:

w = wR0 (x, y) . (11)

By this, the constitutive equation (2)1 may not generally be
satisfied unless a plate is transversally inextensible. Now, following
integration of the constitutive equation (2)2 with respect to z, by
means of (10)1, (11) and condition u (x, y, 0) = 0 we find the
expressions for the in-plane displacement components:
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In this way all the stress components and in-plane displace-
ments are expressed by six unknowns:MRx ,M

R
y ,M

R
xy,Q

R
x ,Q

R
y andw

R
0 .

For the determination of these unknowns we have at our disposal
three plate equilibrium equations (7); hence three more equations
must be deduced from the remaining three constitutive equations
(3) in such a way that these constitutive equations are satisfied in
some approximate way. This may be achieved if we require that the
stresses produced by displacement (12) produce the same moments
as the stress components (9). So, by substituting (12) into constitu-
tive equation (3), equating the results with (9) and performing in-
tegration over the plate thickness the three missing equations are
available:
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where D = h3E/12
(
1− ν2

)
is the plate bending stiffness. For

ω = 1 these equations become Reissner’s equations for the
moments [3,4].
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