
Engineering Structures 32 (2010) 2440–2454

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Second-order slope–deflection equations for imperfect beam–column structures
with semi-rigid connections
J. Darío Aristizabal-Ochoa ∗
School of Mines, National University, A.A. 75267, Medellin, Colombia

a r t i c l e i n f o

Article history:
Received 19 February 2010
Received in revised form
2 April 2010
Accepted 6 April 2010
Available online 7 May 2010

Keywords:
Beams
Beam–columns
Initial imperfections
Imperfect columns
Frames
Large deflections
Nonlinear analysis
Semi-rigid connections
Second-order analysis
Stability
Structural analysis

a b s t r a c t

A new set of second-order slope–deflection equations for Euler–Bernoulli beam–columns of symmetric
cross-section including the effects of initial imperfections (i.e., initial curvature, out-of-plumbness and
axial load eccentricities) and semi-rigid connections is developed in a classical manner. The proposed
method has the following advantages: (1) it can be utilized in the stability and second-order analysis of
framed structures made of Euler–Bernoulli imperfect beam–columns with rigid, semi-rigid, and simple
connections subject to axial and transverse loads; (2) the effects of semi-rigid connections and member
imperfections are condensed into the slope–deflection equations for tension and compression axial
loads; (3) it is more accurate than any other method available in the technical literature and capable
of capturing not only the first-order and second-order elastic responses of frames made of imperfect
beam–columns but also the phenomenon of reversals of deflections along the members as the axial loads
are increased; and (4) it is powerful, practical, versatile and easy to apply. Analytical studies indicate
that the initial imperfections (a) act as if they were additional transverse loads proportional to the
bending stiffness and magnitudes of the imperfections of the corresponding beam–column; and (b) are
detrimental to structures, increasing the lateral deflections, moments, and shears, and also reducing the
critical axial loads of beam–columns and framed structures. This is particularly critical in structuresmade
of beam–columns with initial crookedness and low stiffness connections subjected to high compressive
axial loads. In addition, the effects of initial curvature are amplified by the compressive axial loads applied
at the ends of the member. Four comprehensive examples are included that show the effectiveness of the
proposed method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Current trends for lighter and slender structures have created
great interest in the stability and second-order analyses of struc-
tures, particularly those with semi-rigid connections. These top-
ics have been investigated by Aristizabal-Ochoa [1–4] using both
the classical and the ‘‘modified’’ stability functions as defined by
Timoshenko and Gere [5]. However, the stability of framed struc-
tures using the classical slope–deflection method including the
effects of initial imperfections, P–Delta effects, and semi-rigid
connections is not yet available in the technical literature.
The slope–deflection method (SDM) is a general method used

in the analysis of statically indeterminate beam structures with
rigid joints subjected to transverse loads causing bending and
shear. The classical SDM equations were derived by Wilson and
Maney in 1915 [6] by means of the moment-area theorems consi-
dering bending deformations and neglecting those due to shear
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and axial forces. Basically, a number of simultaneous equations
are formed with the unknowns taken as the angular rotations
and displacements of each joint. Once these equations have been
solved, the bending moments at all joints may be determined. The
SDM, which represents a turning point in the evolution and de-
velopment of the matrix stiffness method as known today, is rela-
tively simple to explain and apply since it is based on equilibriumof
the joints andmembers [7]. The SDM is generally taught in prelim-
inary structural analysis courses [8] and commonly used in struc-
tural design [9] because it provides a clear perspective and a com-
plete understanding of how the internal moments and the corre-
sponding deformations are interrelated, a concept that is essential
in structural engineering.
The main objective of this paper is to present a new set of

slope–deflection equations for the stability and second-order anal-
ysis of plane-framed structures made of imperfect beam–columns
of symmetrical cross-section subjected to both transverse and axial
loads, including the combined effects of eccentricities of the axial
loads, initial curvature, out-of-plumbness, and semi-rigid connec-
tions. The proposed method which is based on the classic stabil-
ity functions for Euler–Bernoulli beam–columns with semi-rigid
connections [1,2] has the following advantages: (1) the effects of
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Nomenclature

E Young’s modulus of the material.
h Length of the beam–column AB.
I Principal moment of inertia of the beam–column

about its axis of bending.
M Applied bending moment or bending moment

diagram.
Ma andMb Bending moments (clockwise +) at ends A and B,

respectively.
P Applied axial load (+compression, −tension) or

axial load diagram.
Pcr Critical axial load.
Pe = π2EI/h2 Euler load.
Ra and Rb Stiffness indices of the flexural connection at A and

B, respectively.
u(x) Lateral deflection of the beam–column center line.
V Shear force diagram.
∆o Initial out-of-plumbness of end B with respect to

end A.
∆ Sway of end B with respect to end A.
κa and κb Flexural stiffness of the end connections at A and

B, respectively.
ρa and ρb Fixity factors at A and B of columnAB, respectively.
ψ(x) = du/dx Beam slope due to applied bending (Fig. 1(c)).
ψa′ and ψb′ Bending rotations of cross-sections at ends A

′

and B
′

with respect to the original shape of the beam
column A

′

B
′

, respectively.

φ =

√∣∣Ph2/EI∣∣ Stability function in the plane of bending.
θa and θb Rotations of ends A and B due to bending with

respect to the vertical axis, respectively:[
θa = ψa′ +

Ma
κa
and θb = ψb′ +

Mb
κb

]
.

semi-rigid connections are condensed into the slope–deflection
equations for tension or compression axial loads; (2) it is more
accurate than any other method available in the technical liter-
ature capable of capturing the second-order response of framed
structures made of beam–columns with initial imperfections and
semi-rigid connections as well as the phenomenon of reversals of
deflections along the members (see [5], p. 34); and (3) the method
is powerful, practical, versatile and easy to teach. The effects of ax-
ial and shear deformations along the member are assumed neg-
ligible. Four comprehensive examples are presented that show
the effectiveness of the proposed method and the corresponding
equations.

2. Structural model

2.1. Assumptions

Consider the two-dimensional (2D) prismatic beam–column
shown in Fig. 1. The element is made up of the linear elastic
Euler–Bernoulli beam–column itself, AB, and lumped semi-rigid
connections at ends A and B as shown by Fig. 1(a) with bending
stiffness κa and κb, respectively. It is assumed that (1) the
beam–column AB of height h is made of a linear elastic material
with elasticmodulus E; (2) the centroidal axis of the beam–column
is not a perfect straight line but has an initial crookedness defined
by a parabola that is symmetric about itsmidspan, u1 = 4a

h2
x(h−x),

or by a series of sinusoidal waves, u1 =
∑n=∞
n=1 an sin

(
nπ xh

)
, and it

has an out-of-plumbness defined by the lateral sway∆o, as shown
in Fig. 1; (3) the beam–column AB is subjected simultaneously
to transverse loads and axial load P with eccentricities ea and
eb at ends A and B, respectively. All applied forces and initial
imperfections cause bending about the principal axis of the
member; (4) the beam–column is prismatic with symmetric cross-
section and principal moment of inertia I in the plane of bending;
and (5) the strains and deformations along its span are relatively
small so that the principle of superposition can be applied.
The bending connections at both ends are elastic, with stiff-

nesses κa and κb (whose units are in force–distance/radian) in the
plane of bending of the beam–column. The ratios Ra = κa/(EI/h)
and Rb = κb/(EI/h) are denoted as the stiffness indices of the con-
nections at ends A and B, respectively. These indices vary from zero
(i.e., Ra = Rb = 0) for simple connections (i.e., pinned) to infinity
(i.e., Ra = Rb = ∞) for fully restrained connections (i.e., rigid).
Notice that the proposed algorithm can be utilized in the inelastic
analysis of beam–columns when the inelastic behavior is concen-
trated at the end connections. This can be carried out by updating
the stiffnesses κa and κb of the connections for each load increment
in a linear-incremental fashion.
For convenience, the following two parameters are introduced:

ρa =
1

1+ 3
Ra

; and ρb =
1

1+ 3
Rb

. (1a–b)

ρa and ρb are called the fixity factors. For hinged connections,
both the fixity factor ρ and the rigidity index R are zero; but for
rigid connections, the fixity factor is 1 and the rigidity index is
infinity. Since the fixity factor can only vary from 0 to 1 for elastic
connections (while the rigidity index R may vary form 0 to∞), it
is more convenient to use in the elastic analysis of structures with
semi-rigid connections.

2.2. Second-order analysis

The second-order lateral deflection (u) and corresponding slope
(du/dx) along the height of the column caused by the axial load
P (assuming that ea = eb = ∆ = ∆o = 0) with initial
curvature given by a parabola or by a series of sinusoidal waves are
derived below in Sections 2.2.1 and 2.2.2, respectively. Also below
in Section 2.2.3, a complete second-order analysis is carried out on
a partially braced column (Fig. 1(a)) with semi-rigid connections
and initial out-of-plumbness ∆o subjected to axial load P with
eccentricities ea and eb at ends A and B, respectively.

2.2.1. Second-order deflection and slope assuming an initial imperfec-
tion of parabolic shape u1 = 4a

h2
x(h− x)

Knowing that

M = −EI
d2u
dx2

,

then

−EI
d2u
dx2
= P

[
u+

4a
h2
x(h− x)

]
or

EI
d2u
dx2
+ Pu = −

4a
h2
x(h− x)P. (2)

Applying the following boundary conditions: u (0) = u (h) = 0,
then the solution to Eq. (2) is given by

u(x) =
8a
φ2

[
cos[(1− 2x/h) φ/2]

cos (φ/2)
− 1

]
−
4a
h2
x (h− x) . (3)

Therefore,
du
dx
=
8a
φh

[
sin[(1− 2x/h) φ/2]

cos (φ/2)

]
−
4a
h2
(h− 2x) (4)

where φ2 = Ph2/EI and a is the initial camber at the midspan.
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