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a b s t r a c t

This paper proposes a practical procedure for a simplified evaluation of the fundamental vibration
period of dam–water systems, and corresponding added damping, force and mass, all key parameters
to assess the seismic behavior. The proposed technique includes the effects of dam geometry
and flexibility, dam–reservoir interaction, water compressibility and varying reservoir level. The
mathematical derivations of the method are provided considering both incompressible and compressible
water assumptions. In the former case, we propose a closed-form expression for the fundamental
vibration period of a dam–reservoir system. When water compressibility is included, we show that
the fundamental vibration period can be obtained by simply solving a cubic equation. The proposed
procedure is validated against classical Westergaard added mass formulation as well as other more
advanced analytical and finite element techniques. Gravity dam monoliths with various geometries and
rigidities impounding reservoirs with different heights are investigated. The new approach yields results
in excellent agreement with those obtained when the reservoir is modeled analytically, or numerically
using potential-based finite elements. The analytical expressions developed and the procedure steps are
presented in a manner so that calculations can be easily implemented in a spreadsheet or program for
simplified and practical seismic analysis of gravity dams.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Considering the effects of fluid–structure dynamic interactions
is important for the design and safety evaluation of earthquake-
excited gravity dams. Significant research has been devoted to this
subject since the pioneeringwork ofWestergaard [1]whomodeled
hydrodynamic loads as an added mass attached to the dam
upstream face. Although Westergaard’s analytical formulation
was developed assuming a rigid dam impounding incompressible
water, it has been widely used for many decades to design
earthquake-resistant concrete dams because of its simplicity.
During the last four decades, several researchers developed
advanced analytical and numerical approaches to account for
dam deformability and water compressibility in the seismic
response of concrete dams [2–12]. Most of these methods are
based on a coupled field solution through sub-structuring of the
dam–reservoir system, making use of analytical formulations,
finite elements, boundary elements or a mix of these techniques.
In the approach proposed by Chopra and collaborators [2–4,7],
the reservoir is modeled analytically as a continuum fluid region
extending towards infinity in the upstream direction. When finite
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or boundary elements are used, the reservoir has to be truncated at
a finite distance and appropriate transmitting boundary conditions
have to be applied at the cutting boundaries to prevent reflection
of spurious waves as discussed by the authors in a previous
work [13]. Someprocedureswere implemented in numerical codes
specialized in two- and three-dimensional analyses of concrete
dams [9,14], and some were validated against experimental
findings from in situ forced-vibration tests [15–18]. Although
such sophisticated techniques were proven to efficiently handle
many aspects of dam–reservoir interactions, their use requires
appropriate expertise and specialized software. For practical
engineering applications, simplified procedures are still needed to
globally evaluate the seismic response of gravity dams, namely for
preliminary design or safety evaluation purposes [19–21].
The fundamental vibration period of dam–reservoir systems

is a key factor in the assessment of their dynamic or seismic
behavior. Most seismic provisions and simplified procedures
use the fundamental vibration period as an input parameter to
determine seismic design accelerations and forces from a site-
specific earthquake response spectrum. It is therefore crucial to
dispose of accurate and yet practical expressions to evaluate the
fundamental period of gravity dams dynamically interacting with
their impounded reservoirs. Hatanaka [22] developed simplified
expressions to estimate the fundamental vibration period of
dams with empty reservoirs. He approximated the dam geometry
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Nomenclature

Abbreviations

ESDOF Equivalent single degree of freedom.
FRF Frequency response function.

Roman symbols

A1, A2, A3, A4 Coefficients given by Eqs. (59)–(63).
a1, a2, a3 Coefficients used for cubic approximation of struc-

tural mode shapes.
B0, B1 Hydrodynamic parameters given by Eqs. (22) and

(23), respectively.
B0n, B1n Hydrodynamic parameters given by Eqs. (24) and

(25), respectively.
B̂0n, B̂1n Hydrodynamic parameters given by Eqs. (32) and

(33), respectively.
Cn, C̃n nth generalized damping of the dam and dam–

reservoir system, respectively.
Cr Velocity of pressure waves in the reservoir.
D1,D2 Coefficients given by Eq. (65).
Es Modulus of elasticity of the dam.
Fst Total hydrostatic force exerted on dam upstream

face.
Fn,Gn Functions given by Eq. (34).
f1 Equivalent lateral force given by Eq. (80).
fsc Equivalent lateral force including higher mode

effects as given by Eq. (83).
Hr,Hs Reservoir and dam heights, respectively.
Ijn Integral given by Eq. (8).
K1 Generalized stiffness of the dam at fundamental

vibration mode.
Ln, L̃n nth generalized forces of thedamanddam–reservoir

system, respectively.
M Mass matrix of the dam monolith.
Ms Total mass of the dam monolith.
mi Westergaard added mass at node i of the dam finite

element mesh.
Mn, M̃n nth generalizedmasses of thedamanddam–reservoir

system, respectively.
Nr,Ns Number of considered reservoir and structural

modes, respectively.
Q̄, Q̄n Vector in Eq. (11) and its elements given by Eq. (13),

respectively.
p, p̄ Hydrodynamic pressure and corresponding FRF,

respectively.
p̄0, p̄j Hydrodynamic pressure FRFs given by Eq. (3).
p̄0n, p̄jn Hydrodynamic pressure FRFs given by Eqs. (4) and

(5), respectively.̂̄p0 Real-valued hydrodynamic pressure given by
Eq. (84).

R1, Rr Frequency ratios given byω1/ω0 andωr/ω0, respec-
tively.

S̄, S̄nj Matrix in Eq. (11) and its elements given by Eq. (12),
respectively.

Sa Pseudo-acceleration ordinate of the earthquake
design spectrum.

t Time.
T1, Tr Fundamental periods of the dam and dam–reservoir

system, respectively.
U coefficient given by Eq. (67).
ū, ¯̈u FRFs for horizontal displacement and acceleration,

respectively.
V Coefficient given by Eq. (67).

Vi Volume ofwater tributary to node i of the dam finite
element mesh.

v̄, ¯̈v FRFs for vertical displacement and acceleration,
respectively.

ẍg, ẍ
(max)
g Ground acceleration time history and peak ground

acceleration, respectively.
yi Height of node i of the dam finite element mesh.
Z̄, Z̄j Vector of generalized coordinates and jth general-

ized coordinate, respectively.

Greek symbols

γi, γ̂i Coefficients given in Table 1 for i = 1 . . . 6.
Γ Variable given by Eq. (65).
Γ1,Γ2,Γ3,Γ4 Analytical solutions of Eq. (64) as given by

Eq. (66).
Γ ∗ Real solution of Eq. (64).
∆ Discriminant of Eq. (64).
δnj Kronecker symbol.
ε Error estimator.
ζi, ζ̂i Coefficients given in Table 2 for i = 1 . . . 3.
η Ratio of reservoir level to dam height, i.e. Hr/Hs.
θ, θ̂ ,Θ Parameters given by Eqs. (76), (43) and (42),

respectively.
κn Function given by Eq. (7).
λn nth reservoir eigenvalue.
µs Mass of the dam per unit height.
ν Poisson’s ratio of dam concrete.
ξn nth fraction of critical damping of the dam.

ξ̃r Equivalent damping ratio of the dam–reservoir
ESDOF system.

ρr, ρs mass densities of water and dam concrete, respec-
tively.

τ Coefficient given by Eq. (67).
ϕ, ϕ̂,Φ Parameters given by Eqs. (57), (39) and (38),

respectively.
χ Frequency parameter defined by R2r .
ψn, ψ

(x)
j nth structural mode shape and x-component of
the jth structural mode shape.

ω Exciting frequency.
ω0 Fundamental vibration frequency of the full reser-

voir.
ωn nth vibration frequency of the dam.
ωr Fundamental vibration frequency of the dam–

reservoir system.

as a symmetrical triangle and distinguished the cases where
bending or shear effects are predominant in the dynamic
response of the dam. Considering analogy with beam theory,
Okamoto [23] proposed simplified formulas to estimate the
fundamental vibration periods of dams with empty and full
reservoirs. Chopra [2,4] analyzed several idealized triangular dam
cross-sections to obtain an approximate fundamental vibration
period and correspondingmode shape of typical gravity damswith
an empty reservoir. These standard dynamic properties and related
quantities were implemented in simplified earthquake response
analyses of gravity dams [19,20]. To determine the fundamental
vibration period of a dam including impounded water effects,
Chopra and collaborators [2–4,7,15] first obtained the frequency
response curves characterizing dam–reservoir vibrations, and
then identified the fundamental vibration frequency as the one
corresponding to the first resonance on the curves. The authors
found that hydrodynamic effects lengthen the fundamental
vibration period of gravity dams and the results obtained for
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