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a b s t r a c t

In this paper, the influence of train speed on the dynamic behavior of lightweight steel bridges is studied.
Moreover, an existing rail discontinuity is also considered and its combined effect on the dynamic
behavior of the bridge is taken into account. In particular, this paper studies first the effect of the axis
frequency on the bridge dynamic behavior as trains enter into the bridge span, which is coincident or
almost coincident with the fundamental eigenfrequency of the bridge. This entrance frequency of the
wheels obviously depends on the axis distance and the train’s speed. Secondly, a rail discontinuity is
considered and its combined effect on the dynamic behavior of the bridge due to the developing impact
forces is studied. The theoretical formulation presented herein is based on a continuous approach and the
equations of motion of the bridge are determined through the use of a simple two-degrees-of-freedom
model.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A lot of research work has been reported during the last
100 years dealing with the dynamic response of railway bridges,
and later of highway bridges, under the influence of moving loads.
Extensive literature references on this subject can be found in the
excellent book of Frýba [1].
Two early interesting contributions in this area exist thanks

to Stokes [2] and Zimmerman [3]. In 1905, Krýlov [4] presented
a complete solution to the problem of the dynamic behavior of
a prismatic bar subjected to a load with constant magnitude and
moving with a constant velocity. In 1922, Timoshenko [5] solved
the same problem but for a harmonic pulsating moving force.
Another pioneering work on this subject was presented in 1934 by
Inglis [6], in which numerous parameters were taken into account.
Finally, in 1951, Hillerborg [7] presented an analytical solution to
the above problem by means of the Fourier method.
Despite the availability of powerful computers, most of

the methods employed today for analyzing bridge vibration
problems are essentially based on Inglis’s or Hillerborg’s early
techniques. Relevant publications are those of Saller [8], Jeffcot [9],
Steuding [10], Honda et al. [11], Gillespi [12], Green andCebon [13],
Green et al. [14], Zibdeh and Reckwitz [15], Lee [16], Michaltsos
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et al. [17], Xu and Genin [18], Foda and Abduljabbar [19], and
Michaltsos [20,21].
On the other hand, in engineering practice, and despite the large

number of studies for over 50 years, bridges have been designed
to account for dynamic loads by increasing the design live loads
by a semi-empirical ‘‘impact factor’’ or ‘‘dynamic load allowance’’,
applied also to other structural systems subjected to dynamic
loads.
Recently, many research programs in different countries have

been focused on the effect of the characteristics of a bridge or a
vehicle on the dynamic response of the bridge. One can mention
the relevant programs in theUSA [22], in theUK andCanada [23], in
countries belonging to the Organization for Economic Cooperation
and Development (OECD) [24], in Switzerland [25], etc.
Although there are many important publications in this field,

one must especially refer to the important experimental research
by Cantieri [26], who studied several models of moving loads.
The dynamic response of railway bridges subjected to moving

loads is one of the fundamental engineering problems requiring
design and maintenance solutions. Due to the design characteris-
tics of train wagons and carriage coaches (see Fig. 1), lateral forces
also develop, producing secondary oscillations that are, in general,
negligible, though under very special conditions, these secondary
oscillations may have a significant effect.
There are numerous publications on the dynamic response of

bridges, dealingwith phenomena produced by singlemoving loads
or by trains moving with normal or high speeds. One must refer to
the works of Matsuura [27], Diana and Cheli [28], Frýba [29], Yang
et al. [30], De Roeck et al. [31], Gao and Pan [32], Xia et al. [33],
and Ivanchenko [34,35]. Finally, Steenbergen [36] has contributed
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Fig. 1. Train wagon geometrical and mechanical characteristics.

Fig. 2. Model of a train crossing a single-span bridge.

in the area of dynamic wheel–rail contact analysis by proposing
suitable models for modeling wheels and rail discontinuities.
For long trains, the axis frequency entering the bridge depends

obviously on the axis distance and the train’s speed. Moreover,
although contemporary rails are made without a joint-gap, there
are many cases in which the designer is obliged to consider the
existence of, or to construct, a discontinuity in the rails.
In this work, the effect of the above two parameters on the

dynamic behavior of a bridge is thoroughly examined, i.e. the effect
of the axis frequency on the bridge dynamic behavior, as trains
enter into the bridge span,which is coincident or almost coincident
with the fundamental eigenfrequency of the bridge as well as the
effect of an existing discontinuity of the rails.
A simple two-degrees-of-freedom model is established for the

solution of the bridge vibration problem, while the theoretical
formulation is based on a continuum approach, which has been
widely used in the literature for analyzing such bridge types.

2. Theoretical analysis

Let us consider now a single-span bridge with length ` (Fig. 2),
made from isotropic and homogeneous material with modulus of
elasticity E, mass per unit length m, and moment of inertia I , that
is crossed by a train consisting by kwagons or 2k axes, each being
at distance e from each other, and carrying load P moving with
constant velocity υ . Let us also consider that at point x = b a
discontinuity in the rails exists.

Fig. 3. Single axis load model.

Using Dirac’s delta function and Heaviside’s unit-step one, the
equation of motion of the bridge becomes

EIw′′′′ + cẇ +mẅ = Pδ(x− a)

×

k∑
ρ=1

[
H
(
t −

(ρ − 1)e1
υ

)
− H

(
t −

`+ (ρ − 1)e1
υ

)]

+ Pimpδ(x− b)

[
k∑

ρ=1

δ

(
t −
b+ (ρ − 1)e1

υ

)

+

k∑
ρ=1

δ

(
t −

(b+ e2)+ (ρ − 1)e1
υ

)]
(1)

where time t is valid in the interval from t = 0 to t = [` +
(k − 1)e]/υ and Pimp is the impact force developed by the rail
discontinuity.

2.1. The load of a single axis

Considering an arbitrary axis of the train crossing the bridge
(see Fig. 3), we have

P = M(g − z̈)+mo(g − ẅ). (2a)

Making a cut at point G (Fig. 3), we obtain

Mz̈ = −ko(z − w)− co(ż − ẇ)

or finally

z̈ + 2βoż + γ 2o z = γ
2
o w + 2βow

where βo =
co
2M

, and γ 2o =
ko
M
.

}
(2b)

The solution of Eq. (2b) is

z(t) =
1
ωo

∫ t

0
e−βo(t−τ)

[
γ 2o w(x, τ )+ 2βoẇ(x, τ )

]
× sinωo(t − τ)dτ

with ωo =
√
γ 2o − β

2
o .

 (3a)

According to Leibnitz’s formula that for the expression G(x) =∫ x
0 Q (x, t)dt , it holds that

dG(x)
dx = Q (x, x) +

∫ x
0
∂(x,t)
∂x dt , from Eq.

(3a) we obtain

ż(t) =
1
ωo

∫ t

0
e−βo(t−τ)

[
γ 2o w(x, τ )+ 2βoẇ(x, τ )

]
× [ωo cosωo(t − τ)− βo sinωo(t − τ)] dτ . (3b)

Thus, Eq. (2a) for load P , because of Eqs. (3a) and (3b), is given
by

P(x, t) = (M +mo)g −mẅ −Mz̈
= (M +mo)g −mẅ + ko(z − w)+ co(ż − ẇ)
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