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a b s t r a c t

In this paper a novel method to solve three dimensional cable structures based on the catenary equation
is proposed. The method is a generalization of a previous engineering application to compute the initial
equilibrium of railway overheads. Themajor contributions of this paper are: the extension of the previous
engineering application to simulate arbitrary three dimensional cable structures; cable elasticity is
incorporated into the formulation; and due to the fact that the method relies on the analytical catenary
equations, high numerical efficiency is exhibited. In order to show the validity of themethod, comparisons
with several well reported cable structure problems are presented. The agreement between the proposed
method and published results is excellent.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their efficiency and aesthetics, cable structures became
quite popular from the 1950s onwards. From the mid 60s to the
end of the 70s a significant number of articles dealing with cable
structures were published, see for instance [1–7] among others.
Nowadays, cable structures are widely used in many applications
as, for example, power transmission lines, railway overheads, cable
transportation systems, cable roof structures etc.
Cable structures pose well known challenging problems, and

the modelling of such structures has always been a subject of
research and innovation. Cablemembers are light, very flexible and
do not experience bending and compression stiffness. Therefore,
cable structures exhibit a high non-linear behaviour. Another
important problem of cable structures is the determination of the
initial equilibrium configuration. That is, the computation of the
stressed reference configuration which is an inverse structural
problem. Reference [8], is one of the pioneering works dealing
with the classification of the methods to solve initial equilibrium
problems. Local behaviour of particular types of cables is another
quite difficult problem that modelling of cable structures should

∗ Corresponding author. Tel.: +34 91 542 28 00; fax: +34 91 542 31 76.
E-mail addresses:Miguel.Such@iit.upcomillas.es (M. Such),

Jesus.Jimenez@iit.upcomillas.es (J.R. Jimenez-Octavio),
carnicero@dim.icai.upcomillas.es (A. Carnicero), oscar.lopez.garcia@upm.es
(O. Lopez-Garcia).

deal with. Helically wound cables present interwire friction which
influences axial stiffness [9]. Cables can show hockling or kinking
phenomena as a result of torsional stability of single and double
rope systems, [10]. For instance, the validity domain assessment
of the mechanical behaviour of simple straight strands which
are layers of helical wires wound around a central straight
wire core has appeared in [11]. This paper focuses on macro-
scale modelling of complex cable structures, that is, the initial
equilibrium configuration computation and the cable structure
response to external load equilibrium under general loading.
Therefore, the modelling of the local behaviour of wire cables is
beyond the scope of the paper.
Broadly speaking, the methods used to model cable structures

can be classified into two main groups. Following the nomencla-
ture proposed in [8] these approaches are called: the non-linear
displacement method and the force density method.
The method of non-linear displacement is based on an iterative

process that modifies step by step the geometry from one
configuration to another fulfilling the equilibrium equations.
Argyris’s pioneering work, [12], applies this method to the
design of the cable roof of the Olympic Stadium of Munich,
replacing real cables with truss elements. The dynamic relaxation
method with kinetic damping is used in [13] to determine the
initial equilibrium configuration and analyse prestressed nets and
membranes. Based on the method of non-linear displacements,
some authors, [14] and [15], modelled the cable as a series of
straight linear trusses developing specific formulations to improve
the method performance. Trying to improve these formulations,
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Karoumi [16] developed a curved finite element, Jayaraman and
Knudson [17] formulated a two node finite element based on the
exact equation of the elastic catenary and, more recently, Andreu
et al. in [18] implemented a deformable catenary element into
a finite element method. The tangent stiffness of a cable using
the catenary equation is provided by [19]. Finally, it can be said
that most of the current non-linear displacement methods are
based on the finite elementmethod. An alternative approach to the
finite element method is presented in [20] where an engineering
application based on the catenary equation is used to analyse the
initial equilibrium and stiffness computation of railway overheads.
The force density method was initially introduced by

Scheck, [21]. The non-linear nature of the problem is considered
by means of the projections of the forces at every node and their
non-linear dependencywith the nodal coordinates, that are the un-
knowns of the problem. However, other authors tried to obtain an
equivalent linear problem taking into account certain assumptions
about the final solution. Among them, Siev and Eidelmann suggest
in [1] imposing perpendicularity condition on the horizontal pro-
jection of the equilibrium configuration of a cable net. This restric-
tion allows the initial equilibrium to be calculated simply bymeans
of solving an equivalent system of linear equations. However, this
assumption only made the method applicable to a reduced range
of problems. Indeed, this method was revisited and applied in [22]
to solve the initial equilibrium problem of structures composed
of mixed cables and rigid elements under compression loads. The
force density method was enhanced by Haber and Abel in [8].
Instead of straight beam elements they added curved and shell el-
ements to the force density formulation. The density force method
was also combined with least squares optimization techniques
to generate the cutting patterns of the membranes that compose
a shell structure in [23]. This method is used in [24] to design
the shape of deployable membrane reflectors within aerospace
applications.
This article deals with the static behavior of three dimensional

cable structures. Themethod proposed in this paper is based on the
exact solution of the catenary. The use of the analytic expression
of the catenary to solve or formulate complex problems has been
used previously by other authors, among others see [25,26,19,
18,20,27]. One of the most important differences between the
aforementioned models and the herein proposed one is that while
previous models use either catenary tension or node positions
that are unknown, the herein proposed method uses all possible
unknowns in a cable structure problem, that is, the catenary
variables such as tension, length and the catenary parameter as
well as node positions. In this way, both the initial equilibrium
configuration and the cable structure response to external loads
can be calculated using the same strategy. The method has
been implemented in a general purpose computer code toolbox
called CALESCA. Moreover, from this perspective, the proposed
formulation should be regarded as a mix between a non-linear
displacement method and a force density method.
The remainder of the paper is organised as follows. Section 2

describes the numerical foundations of the method. Section 3
provides the application of themethod to severalwell documented
cable structures. The comparison between the method proposed
and the published results are also presented. Finally, in Section 4,
the main conclusions of this study are summarised.

2. Mathematical formulation

In what follows the mathematical formulation of the method
proposed in this paper is presented. First, the global formulation of
the catenary equations into a three dimensional reference system
is shown. Next, the global equilibrium of a cable structure is
defined.

2.1. Global formulation of a single three dimensional cable

As is well-known the catenary is the equilibrium shape of a
cable that hangs between fixed points under its own weight. For
a comprehensive review of cable mechanics see [28] and for the
local catenary formulation followed here see [29]. Let us consider
the single three dimensional cable shown in Fig. 1. Using the local
reference system

〈
Õξ1ξ2ξ3

〉
, the catenary equation can be written

as:

ξ i2 = c cosh
(
ξ i1

c

)
(1)

where c = t i1/w is the catenary shape parameter, t
i
1 the horizontal

component of the cable tension (direction ξ1), andw is the weight
per unit of length of the cable. The length of the cable between the
lowest point of the catenary, l, and a general point, i, is denoted by
sli and is defined as

sli = c sinh
(
ξ i1

c

)
. (2)

Finally, the tension at point i, t i, can be expressed by

t i = c w cosh
(
ξ i1

c

)
. (3)

The three previous equations, i.e. (1)–(3), summarise the
behaviour of a cable under its own weight into a local reference
system. Now, the positioning of the single cable should be referred
to as a three dimensional frame. The following notation will be
used: subscript letters refer to directions and superscript letters
refer to a catenary point. Let us consider a general point, i, of the
catenary represented in Fig. 1. The spatial position of an arbitrary
point i of the catenary, X i, is described by the coordinates with
respect to a global cartesian reference system 〈OX1X2X3〉. This
position vector can be expressed in the form

X i = X Õ + R · ξi (4)

where ξi ≡
(
ξ i1, ξ

i
2, 0

)t t is the transpose, and the rotation matrix
R is defined by

R =

sinϕab 0 − cosϕab

0 1 0
cosϕab 0 sinϕab

 (5)

with ϕab = atan
((
Xb1 − X

a
1

)
/
(
Xb3 − X

a
3

))
. The rotation matrix R

transforms the vectors from the local system,
〈
Õξ1ξ2ξ3

〉
, to the

global system, 〈OX1X2X3〉. Considering Eqs. (4) and (1) it is possible
to express the vertical coordinate of the point i as

ξ i2 = X
i
2 − X

Õ
2 = c cosh λ

i (6)

where λi = ξ i1/c. Applying Eq. (6) at the two end nodes, a and b,
of the catenary arch, see Fig. 1, the following relationship can be
found:

ξ b2 − ξ
a
2 = X

b
2 − X

a
2 = c

(
cosh λb − cosh λa

)
(7)

where λa and λb should be written as functions of the unknowns
of the problem, that is λa(Xa, Xb, c) = αab − c asinh

(
βab
)
and

λb(Xa, Xb, c) = αab + c asinh
(
βab
)
where

αab =
1
2
dab (8)
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