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a b s t r a c t

A novel 3D elastic total Lagrangian formulation is developed for the numerical analysis of steel–concrete
composite beams which are curved in-plan. Geometric nonlinearities are considered in the derivation
of the strain expressions, and the partial interaction at the interface in the tangential direction as
well as in the radial direction due to flexible shear connectors is incorporated in the unique proposed
formulation, which is derived from considerations of fundamental engineering mechanics. Examples are
presented to illustrate the effects of initial curvature, geometric nonlinearity and partial interaction on the
behaviour of composite curved beams, which are compared with those based on more sophisticated but
computationally less efficient ABAQUS shell element models and experiments reported in the literature.
The results demonstrate that the developed formulation is accurate and effective in capturing the
behaviour of composite beams curved in-plan, providing a highly efficient finite element.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Composite steel and concrete beams which are curved in-
plan are used very widely in highway bridges. In deference to
curved steel bridges (e.g. [1]), comparatively few studies have
been reported on curved composite beams, and in particular on
their numerical modelling. Colville [2], Thevendran et al. [3,4] and
Shanmugam et al. [5], conducted experiments on steel–concrete
composite curved beams to investigate the ultimate load be-
haviour, while Giussani and Mola [6] recently developed an ana-
lytical formulation for elastic composite beams curved in-plan by
assuming full interaction between the steel girder and the concrete
deck. Chang andWhite [7] discussed the modelling considerations
for composite curved steel bridges and illustrated the effects of
cross-sectional distortions.
Studies (e.g. [8,9]) have shown that it is also important to

consider geometric nonlinearity in order to accurately predict
the response of curved beams, even under service loads. This is
because the secondary bending about the minor principal axis and
torsion actions may develop and become increasingly profound
with an increase of the twist rotations. Bradford et al. [10] showed
that during unpropped construction of curved composite bridges,
effects of geometric nonlinearity may cause early yielding of the
I-girder since I-beam girder acts as a separate individual curved
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beam when concrete is wet. Thus, time effects are critical for the
construction of composite beams. Topkaya et al. [11] conducted
experimental and numerical studies to establish the behaviour
of composite curved bridges during construction. Liew et al. [12]
also showed the effects of geometric nonlinearity on the inelastic
behaviour of curved I-beams and proposed simplified equations
to evaluate the ultimate strength. The behaviour of curved beams
has also been studied by Hall [13], Zureick et al. [14] and Gimena
et al. [15–17].
On the other hand, the behaviour of composite beams is

significantly influenced by the flexibility of the shear connection.
A beam theory that considers the partial interaction in the
longitudinal direction of straight beams was presented by
Newmark et al. [18]. Adequate modelling of composite curved
beams with flexible shear connectors, however, needs to account
for the partial interaction in the radial direction as well as
in the tangential direction, because in curved beams radial
deflections occur even for vertical loading. Accurate beam models
for composite beams curved in-plan accounting for partial
interaction and incorporating the important coupling of bending
and torsion actions and deflections do not appear to have been
reported in the open literature. Beam models always have the
advantage of easy structural modelling and easy interpretation
of the output results. The objective of this paper is therefore
to present a 3D geometrically nonlinear beam finite element
that considers the partial interaction in the tangential as well
as in the radial directions in the analysis of composite beams
curved in-plan. Examples are considered to illustrate the effects
of initial curvature, geometric nonlinearity and partial interaction
on the behaviour of composite curved beams. The proposed finite
element formulation is validated by comparing the numerical
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results obtained from the formulation with more sophisticated
yet complex ABAQUS shell element models and with available
experimental results reported in the literature. The beam finite
element is shown to provide a very efficient technique for
modelling curved composite beams.

2. Kinematic relations

2.1. Basic assumptions

Fig. 1 shows a composite beam curved in-plan, for which the
following assumptions are made:

• The steel girder is a doubly symmetric I-beam that is curved in
plan;
• Thedeckhas a rectangular cross-section andhas the same initial
curvature as the girder in the undeformed configuration;
• Both cross-sections remain rigid throughout the deformation,
i.e. no distortion occurs;
• There is no uplifting between the girder and the deck;
• Radius of curvature is constant along the beam;
• The shear connection between the girder and the deck is flexible
both in the tangential and radial directions;
• Rotations and deflections are large, but the strains are small;
• According to the fact that plane sections remain normal to the
deformed axis, shear strains on the cross-sections are induced
by uniform torsion only.

It should be noted that in highway bridges composite curved
beams with multi-girder cross-sections are commonly used. For
such beams the distortion effects may be significant (e.g. Chang
and White [7]) thus the rigid cross-section assumption adopted
herein may have to be relaxed when the effects of cross-sectional
distortion are significant.

2.2. Position vector

Two coordinate systems are adopted. The fixed (spatial) oxys
coordinate system has the s axis oriented along the axial direction
of the curved composite beam (in the un-deformed configuration)
while axes ox and oy are in the plane of the cross-section. The three
components of the triad p(px, py, ps) form an orthogonal basis of
the system oxys defined along the tangent direction of the axes ox,
oy and os, respectively, as shown in Fig. 1. The position vector of a
point P in the undeformed configuration can be written as

a0 = r0 + xpx + ypy, (1)

where r0 (Fig. 1) is the position vector of the origin o of the
undeformed beambased on an arbitrary but fixed originO in space.
The material (body attached) o1x1y1s1 coordinate system alters
with the deformation of the structure so that coordinates of a point
on the beam after deformation will be identical to those before
deformation. The material coordinate system coincides with the
spatial coordinate system only in the undeformed configuration.
The total deformations of origin o1 are considered to result from
translations due to the displacements u, v, andw along the tangent
direction of the axes ox, oy and os, respectively, and a finite rotation
of the total cross-section through an angle φ about the axis os.
Hence, the position vector r (Fig. 1) of the origin o1 is

r = r0 + upx + vpy + wps. (2)

The position vector of the point P at the deformed configuration
can be written as

a = r+ xqx + yqy − ω(x, y) [κs(s)+Ωκ(s)] qs
+Ωs(s)qs +Ωx(s)qx, (3)

Fig. 1. Coordinate systems, position vectors and displacements.

where the triad q(qx, qy, qs) is positioned along the tangent
direction of the deformed axes o1x1, o1y1 and o1s1, respectively and
ω(x, y) is the normalised section warping displacement function
(e.g. [19]). In Eq. (3), κs is the twist ratio about the undeformed axis
s and the deformations Ωx and Ωs are due to slip displacements
in the radial and tangential directions in the horizontal plane,
respectively. The function Ωκ results from the slip between the
top flange of the steel girder and the deck during the warping
action of the cross-section. Herein, the functionsΩx,Ωs andΩκ are
assumed positive for the girder and negative for the deck. The total
slip displacements between the girder and the deck usp and wsp in
the x (radial) and s (tangential) directions, respectively can thus be
obtained by subtracting the position vector of the deck from that
of the girder, i.e.

usp(s) = 2Ωx(s) (4)

and

wsp(xi, yi, s) = 2Ωs(s)− 2ω(xi, yi)Ωκ(s), (5)

in which xi and yi denote the coordinates of a point at the interface.

2.3. Finite rotations and strains

The finite rotation tensor R determines the orientation of the
triad qwith respect to the triad p, i.e. q = Rp. The components ofR
in terms of displacements u, v,w and the angle of twist φ are given
in Appendix A. In the deformed configuration, the curvatures κx, κy
and the twist ratio κs about the deformed axes o1x1, o1y1 and o1s1,
respectively can be obtained from Serret–Frenet formulae [20] as{dqx/ds
dqy/ds
dqs/ds

}
= (1+ ε)

[ 0 κs −κy
−κs 0 κx
κy −κx 0

]{qx
qy
qs

}
. (6)

The components of κx, κy and κs are also given in terms of u,
v, w, and φ in Appendix A. Several stress and strain measures for
the geometric nonlinear analysis of structures are established in
the literature. In order to develop a total Lagrangian finite element
formulation, theGreen–Lagrange strains are adoptedherein. In line
with the rigid cross-section assumption, the normal strains in the
x and y directions are assumed to be zero and the non-zero normal
strain on the cross-sectional surface can be calculated from

εss =
1
2

(
da
ds
da
ds
−
da0
ds
da0
ds

)
. (7)
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