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a b s t r a c t

The reliability-based design under stochastic stationary excitation of linear dynamical systems with
higher-dimensional output is discussed in this paper. An analytical approximation is initially presented
for the calculation of this reliability for applications for which the model parameters are treated as
known. This approach is based on a computationally efficient approximation to the conditional out-
crossing rate for higher-dimensional vectors. The extension to cases where the model parameters are
treated as unknown and are characterized by probability models is then addressed. This requires the
evaluation of a multidimensional probability integral over the uncertain model parameter space and a
methodology based on a Taylor series expansion around the local maxima of the integrand, called design
points, is considered for this purpose. A novel approach is developed for addressing cases with multiple
design points. The estimation of this probability integral by Monte Carlo simulation with importance
sampling is also considered. Implementation details for applications to reliability-based design problems
are extensively discussed. In particular, the effect of the errors introduced by the various, numerical and
asymptotic, approximations is addressed and methods for reducing their relative or absolute importance
are presented. Also practical guidelines are provided for improvement of the computational efficiency for
using the analytical reliability approximation within the algorithm that searches for the optimal system
design configuration.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Calculation of system reliability is one of the most difficult
problems in stochastic analysis of dynamical systems. This task is
often referred to as solving the first-excursion (or first-passage)
problem and it is defined as the determination of the probability
that within some given time duration, the output trajectory of
a system out-crosses the boundary of a safe region that defines
acceptable performance. The system model parameters, based
on the available knowledge, may either be treated as certain or
include some level of uncertainty. The latter can be quantified by
assigning appropriate probability models to them [1]. The interest
in this area focused originally on analytical approximations
for dynamical systems with known model characteristics and
low-dimensional output. First-excursion problems for scalar
processes have therefore received a lot of attention (e.g. [2,3]),
while the vector process counterpart has received much less
attention. Theoretical discussions [4], including computation of
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lower and upper bounds [5,6], have been made, but practical
results for the multidimensional case were initially presented
only for applications with independent processes and very
small dimensions [7,8], presumably because the computational
capabilities required for the associated calculations were not
available at the time that the interest was focused on this topic.
Over the last decade or so, stochastic simulation methods have
dominated the research interest in this area [9–12]. Thesemethods
offer the ability to estimate system reliability with a predefined
level of accuracy, can be easily extended to additionally address
uncertainties in the system model properties, apart from the
uncertainty stemming from the stochastic excitation, and can
efficiently handle complex description for the dynamical system
(for example, nonlinearities in the response) and for the stochastic
excitation (for example, nonstationary characteristics).
The recent applications of reliability-based concepts for the

design of engineering systems under stochastic excitation [13–15]
have created an incentive for researchers to revisit the problem
of analytical evaluation of the reliability of dynamical systems.
Such design applications require a large number of evaluations
of the system reliability with a small – or at least consistent
– estimation error, when performing the search to identify
the optimal system properties. Analytical approximations are
frequently an attractive alternative to stochastic simulation for this
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Nomenclature

θ Vector of model parameters
Θ Space of possible values for θ
p(.) Probability distribution function
ϕ Vector of design variables
Φ Admissible space for design variables
ϕ∗ Optimal design choice
x State vector
w White-noise vector
A(ϕ; θ), E(ϕ; θ), C(ϕ; θ) State Space Matrices
z Output vector
zi ith performance variable
βi Acceptable response threshold for zi
ni Outward normal vector for zi = βi plane
oi Orthogonal to ni component of z
T Matrix transformation between oi and z
Ds Acceptable performance domain for z
SD Boundary of Ds
Bi Hyperplane pair |zi| = βi
∆i Intersection of Ds and Bi
P(.) Probability
PF (ϕ) Failure probability
PF (ϕ|θ) Failure probability for specified θ
E[.] Expected value
n+z (ϕ, t; θ) Conditional mean out-crossing rate for z
ν+z (ϕ; θ) Stationary conditional mean out-crossing rate
r+zi (ϕ; θ) Unconditional mean out-crossing rate for zi
λzi(ϕ; θ) Temporal correlation factor for zi
Pzi(ϕ; θ) Spatial correlation weighting factor for zi with

respect to z
P(ϕ; θ) State covariance matrix
Kzz(ϕ; θ) Output covariance matrix
σ 2zi Stationary variance for zi
σ 2żi Stationary variance for żi
I Probability integral
k(ϕ, θ) Response function involved in I
s(θ;ϕ) Log of the integrand of I
Hs(θ;ϕ) Hessian matrix for s(θ;ϕ)
θ∗j jth design point
gj(θ) Gaussian approximation around θ∗j
Ij Probability integral of scaled Gaussian approxima-

tion around θ∗j
RI j Additional contribution to I from Gaussian approxi-

mation around θ∗j
rj Reduction factor for Ij
θi Sample for model parameters
q(θ) Importance sampling density

purpose and a resurgence of interest on the analytical reliability
calculation has been demonstrated [16–18]. For example, for linear
systems under stationary excitation analytical approximations can
facilitate a computationally efficient estimation of the system
reliability [18], which is highly appropriate for the aforementioned
type of design problems.
This paper focuses (i) on an analytical approximation for the

stationary reliability of certain and uncertain linear dynamic
systems with higher-dimensional output, and primarily (ii) on
computational aspects for the application of this approximation
to reliability-based design. The latter constitutes and the main
contribution of this work. The system reliability is directly adopted
as the objective function. Although reliability-based design
optimization problems are frequently formulated by adopting
deterministic objective functions, for example the structural

cost, and using the system reliability as a constraint [19,20],
cases that involve the system reliability directly as the objective
functions are also common; for example such problems are
encountered in the field of structural control [15,21]. Note that
the analytical approximation presented here could be also used
for design applications that involve the stationary reliability as a
constraint. The discussions here, though, focus on computational
and theoretical considerations when this reliability is selected as
the performance objective to be optimized.
Initially the approximation by Taflanidis and Beck [18] for the

first-passage problem is reviewed. This approximation estimates
the system reliability using the conditional out-crossing rate over
the boundary of the region that defines acceptable performance
for the system output. Numerical issues related to the evaluation
of this rate and practical considerations pertaining to reliability-
based design are discussed. The extension to systems with
uncertain model parameters is then presented. This requires
evaluation of multidimensional probability integrals and an
existing asymptotic expansion is suggested for this task. This
expansion involves solving for the local maxima of the integrand,
called design points, and accurately calculating the Hessian matrix
at these locations. A novel method is developed here to address
applications that involve multiple design points. An alternative
approach, based on Monte Carlo integration, is also discussed
for evaluation of the multidimensional probability integral. The
implications on robust stochastic design are extensively discussed,
when the above approaches are used for evaluation of system
reliability. In particular, the effect of the errors introduced by
the numerical and asymptotic approximations is addressed and
methods for reducing their relative or absolute importance are
presented. Also relevant practical guidelines are provided for
improvement of the computational efficiencywithin the algorithm
that searches for the optimal system design.

2. Problem formulation

Consider a linear system subject to stochastic excitation that
is modeled as filtered Gaussian white noise. The system includes
model parameters θ ∈ Θ ⊂ <nθ , and some adjustable parameters
which define its design, referred to herein as design variables,
ϕ ∈ Φ ⊂ <nϕ , where Φ denotes the bounded admissible design
space. The state space form of the system is

ẋ(t) = A(ϕ; θ)x(t)+ E(ϕ; θ)w(t)
z(t) = C(ϕ; θ)x(t) (1)

where x(t) ∈ <nx is the state vector; z(t) ∈ <nz is the vector
of performance variables (output of the system); w(t) ∈ <nw
is a vector of zero-mean Gaussian white-noise disturbances,
appropriately normalized, so that the spectral intensity matrix
equals to the identity matrix I; and A(ϕ; θ), E(ϕ; θ), C(ϕ; θ)
are matrices that are a function of the design variables ϕ and
depend on the model parameters θ. The state vector x(t) is an
augmentation of the original structural system states, together
with ancillary states related to the stochastic input model and any
other dynamics pertaining to the system. Thus, the formulation in
(1) takes into account the spectral characteristics of the stochastic
excitation by appropriate augmentation of the state equation.
In the space of the performance variables z(t), we consider

an hyper-rectangular domain Ds ⊂ <nz that defines acceptable
performance:

Ds =
{
z(t) ∈ <nz : |zi(t)| < βi, ∀ i = 1, . . . , nz

}
. (2)

An example for a three-dimensional space is shown in Fig. 1. Region
Ds is bounded by the hyperplane pairs Bi : |zi| = βi, i = 1, . . . , nz
and by appropriate definition of the output vector z(t) can
represent any symmetric limit state function. The extension to
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