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a b s t r a c t

The large amplitude free vibration analysis of tapered rectangular thin plates with edges elastically
restrained against rotation is investigated using a differential quadrature method (DQM). The governing
equations are based on the thin plate theory using Green’s strain in conjunction with von Karman
assumption. In order to better recognize the nonlinearity effects, the in-plane immovable conditions are
assumed along the edges of the plate. The boundary conditions are exactly implemented at the boundary
grid points and are conveniently built into the equations of motion using a DQ methodology recently
developed by the authors to solve fourth-order governing differential equations. The harmonic balance
method is used to transform the resulting differential equations from temporal to frequency domain.
Consequently, a direct iterative method is used to solve the nonlinear eigenvalue system of equations.
The convergence of the method is verified and the solution accuracy is demonstrated by comparing the
results with those for limiting cases, i.e., the free vibration of tapered plates under classical boundary
conditions. Furthermore, the effects of different parameters on the nonlinear to linear natural frequency
ratio of plates with linearly or bi-linearly varying thickness and with edges elastically restrained against
rotation are studied and the results are comparedwith those of DQ solution based on the first-order shear
deformation plate theory.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Linear and nonlinear free vibrations of rectangular thin plates
with uniform thickness have been extensively studied by many
investigators. For tapered thin plates however, only linear free
vibrations have been conducted, see for example Refs. [1–9]. Due
to much practical use of tapered plates and panels in structures
under large deformation, the subject is of interest inmany practical
applications.

It is well known in experimental studies on plate vibration that
the exact simulation of the so-called simply supported edges is
impossible, since the edgeswill always experience some amount of
resistance to rotation. Therefore, such constraints have promoted
new modeling procedures with improved solutions to account for
better agreement with those of practical data. In comparison, with
nonlinear free vibration analyses of plates subjected to classical
boundary conditions, only limited studies are available for plates
with elastically restrained edges [10–12] all limited to plates with
uniform thickness.
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The Galerkin and the finite element methods as the two
common methods have been used to carry out a discretization
in the spatial domain in studying the nonlinear free vibration
analyses of plates. The differential quadraturemethod (DQM) as an
alternative numerical technique has been used in such structural
analyses [13–19]. In this respect, Feng and Bert [13] studied
the nonlinear free vibration of isotropic Euler–Bernoulli beams
using the conventional DQM. Using a spline based DQM, Guo and
Zhong [14] investigated the same problems considered by Feng
and Bert [13]. In another work, they considered the nonlinear
free vibration analysis of isotropic Timoshenko beams [15]. Liew
and his co-workers [16–23] have introduced and solved various
types of analyses for two- and three-dimensional plate structures
by DQM as extended applications of this powerful algorithm
in structural mechanics analysis. Li and Cheng [24] studied the
effects of large deformation on fundamental natural frequency
of rectangular orthotropic plates using DQM. More recently,
Malekzadeh investigated the nonlinear free vibration analyses of
skew composite plates [25,26] and tapered Mindlin plates [27]. In
all these studies, uniform thickness beams and plates with simply
supported and clamped edges have been considered.

In this paper, the applicability of a DQ approach is investi-
gated for solving large amplitude free vibration of tapered thin
plates with elastically restrained against rotation edges. Conven-
tional DQM cannot handle thin walled structural problems in a
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Nomenclature

a plate dimension in x-direction
A extensional stiffness of plate at an arbitrary point

(x, y)

Ax(r)
ij DQweighting coefficient of the rth-order derivative

in x-direction
Ax
ij, A

y
ij DQ weighting coefficients of the first-order deriva-

tive in x- and y-directions, respectively
b plate dimension in y-direction
Bx
ij, B

y
ij DQ weighting coefficients of the second-order

derivative in x- and y-directions, respectively
D bending stiffness of plate at an arbitrary point
Do bending stiffness of plate at the corner x = y = 0
E Young’s modulus of plate
ho thickness of plate at the corner x = y = 0
kir elastic restraint coefficient along the edge ‘i’ of plate

(i = 1, . . . , 4)
Kir non-dimensional coefficient of rotational stiffness

along the edge ‘i’ of plate [= kirDo/b along x-edges
and kirDo/a along y-edges]

Mxx,Myy,Mxy bending moment about y- and x-axes and
twisting moment, respectively

nx, ny x- and y-components of unit normal vector to an
arbitrary edge of plate

Nx,Ny number of grid points in x- and y-directions
Nxx,Nyy in-planenormal force resultant in x- and y-directions
(Nxx)ij, (Nyy)ij discretized in-plane normal force resultant in

x- and y-directions
Nxy in-plane shear force resultant
(Nxy)ij discretized in-plane shear force resultant
u, v,w displacement components in x- y- and transverse-

directions of a point on mid-plane of plate, respec-
tively

{u}d, {v}d in-plane displacement vectors at domain grid
points

{w}d transverse displacement vector at domain grid
points

x, y, z the Cartesian coordinate variables
Wc center deflection of plate
ν Poisson’s ratio of plate
εo convergence tolerance
ρ plate density

straightforward manner, as one of the drawbacks of DQM. This
is because their equations of motion include fourth-order dif-
ferential equations and consequently multiple boundary condi-
tions of the field variable do exist at boundary grid points [28,
29]. To overcome this drawback, a recently developed DQM by
Karami and Malekzadeh [30,31] was employed for the imposi-
tion of such boundary conditions. It was shown that the boundary
conditions can be built into the discretized form of the equa-
tions of motion without using the usual matrix partitioning for
eliminating the boundary degrees of freedom or reformulations
of DQ weighting coefficients. Also, in spite of some conventional
DQ approaches [32], the boundary conditions are exactly im-
plemented at boundary grid points. In this paper, the conver-
gence of this DQM will be demonstrated and its accuracy will
be checked by comparing the results for nonlinear free vibration
of plates with limiting cases of boundary conditions and also for
the linear free vibration problems available in the literature. As no
solution is available for nonlinear free vibration of tapered plates,
the results are compared with those of the first shear deforma-
tion theory based (FSDT) DQM method. This is because the FSDT

has the second-order partial differential equations and hence has
no problemwith boundary condition implementation [18,19]. This
work therefore establishes the applicability of the aforementioned
DQ methodology for a relatively complicated engineering analy-
sis problem, i.e. nonlinear free vibration analysis of tapered thin
plates.

2. Governing equations

A plate of length a, width b and thickness h is considered
(see Fig. 1). Based on the classical thin plate theory (TPT),
the constitutive relations for the resultant in-plane forces and
moments can be related to the displacement components (u, v,w)
at an arbitrary point on the mid-plane of the plate as,
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where A = Eh/(1 − ν2) and D = Eh3/12(1 − ν2).
The in-plane equations ofmotion for a tapered rectangular plate

in terms of displacement components in the rectangular Cartesian
coordinate system in x- and y-directions can be written as follows,
respectively,
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For tapered thin plate, the transverse equation of motion (in the z-
direction) and the rotational equations of motion about the x- and
y-axes can be summarized as
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