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a b s t r a c t

This paper describes a method for analysing the lateral buckling of beams continuously restrained at
one flange. The deformed configuration is governed by a system of differential equations solved by the
Galerkin method. The matrices of rigidities, restraints and geometry are specified as well as the problem
with the eigenvalues,with a view to predicting the buckling loads and the corresponding buckling shapes.
The effects of moment distribution and continuous restraints on the elastic flexural-torsional buckling
of beams are also studied. The results show that the restraint of the tensioned flange can have a weak
influence on the critical buckling moment.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Flexural-torsional buckling is an important limit state thatmust
be considered in structural steel design. This type of instability
phenomena occurs when a structural member undergoes signif-
icant out-of-plane bending and twisting. The failure occurs sud-
denly in members with a much greater in-plane bending stiffness
than torsional or lateral bending stiffness.

The problem of lateral torsional buckling of steel beams has
been studied extensively by many authors, including Timoshenko
and Gere [1–8]. In these investigations, the critical load is
determined either by integrating the governing differential
equations or by making use of an energy principle. However,
these investigations are mainly focused on the buckling of an
isolated beam without considering secondary structural members
(such as sheeting, steel deck). A beam is often connected to
other elements which participate in the buckling actions and
significantly influence the structure’s buckling resistance. This
configuration is encountered very frequently in practice, as in the
case of purlins supporting a steel deck cover, and also in that of
cross bars of a portal frame with purlins.

Continuous lateral restraints are usually considered as being
uniform along the length of a beam, and are often used to
approximate the actions of restraining elements connected to
the beam at closely spaced intervals, as in the case of roof
sheeting. When continuous restraints are assumed to be rigid,
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they impose a longitudinal axis about which the beam cross-
sections rotate during buckling (Larue & Khelil [9,10]). Among
these investigations, mention can be made of the work done by
Trahair, and Hancok [11], Bradford [12–14], Nethercot [15] and
Trahair [16].

More recent research on the theory of flexural-torsional
buckling has been presented by Tong and Zhang [17,18] with their
investigations of a new theory to clarify the inconsistencies of
existing theories of the flexural-torsional buckling of thin-walled
members. In the general case of restrained beams, exact solutions
for buckling loads cannot be obtained and a numerical method
must be used to obtain an approximate solution.

This paper presents a simple numerical theory designed to
resolve the governing differential equations of instability for this
problem. The analysis presented uses the Galerkin method to
determine the critical load. Thematrices of rigidities, restraints and
geometry are specified aswell as the problemwith the eigenvalues
in order to predict the buckling loads and the corresponding
buckling shapes.

The calculation details are specified voluntarily so that readers
can summarise and adapt the study to each particular case. Several
cases of distributed forces are treated as linearly varying loads and
parabolic varying bending moments.

This method cannot be applied to welded I-section beams
with slender webs, as lateral-distortional buckling may occur. A
computationally efficient method is presented by Bradford [19]
for studying this phenomenon. In addition, certain problems
within this field of lateral restrained beam–column stability, are
investigated by Horne & Ajmani [20].
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Fig. 1. Displacement and twist rotation for an asymmetric section.

2. Kinematics

At the critical state there is a tendency for the compression
flange to bend sideways and for the remainder of the cross-section,
which is stable, to restrain it. The net effect is that the section
rotates and moves laterally, as shown in the Fig. 1. Here, the total
displacement of the cross-section is composed of 2 translations and
one rotation [21].

A straight thin-walled beam with an arbitrary cross-section
member is referenced by a Cartesian-coordinate system (x, y, z),
where the x-axis is parallel to the longitudinal axis of the beam and
y and z are the principal axes of the cross-section.

After deformation, section (S′) results from (S) by two transla-
tions −→v (x) and −→w (x).

v (x) is the displacement of point C along axis (C, Ey) in coordinate
system RC (C, EyC,EzC).

w (x) is the displacement of point C along axis (C,Ez) in
coordinate system RC (C, EyC,EzC).

Cross-section (S′′) results from (S′) by the rotation of θx (x) of
centre O′.

(yC, zC) are the shear centre coordinates.
The displacement of point M (xM, yM, zM)G is then given by

−→
MM

′′

=

u
v
w


︸ ︷︷ ︸

Translation

[
−→
X G

−→
Y G

−→
Z G

]

+

 yM sin(θz) + zM sin(θy)
(yM − yC) [cos(θx) − 1] − (zM − zC) sin(θx)
(yM − yC) sin(θx) + (zM − zC) [cos(θx) − 1]


︸ ︷︷ ︸

Rotation

×

[
−→
X G

−→
Y G

−→
Z G

]
. (1)

For moderate rotation, we can then write:sin(θx) ≈ θx

cos(θx) − 1 ≈ −
1
2
θ2x .

According to these hypotheses, the displacement field is assumed
to take the following form

−→
MM

′′

=


u − yMθz + zMθy

v − (zM − zC) θx −
1
2

(yM − yC) θ
2
x

w + (yM − yC) θx −
1
2

(zM − zC) θ
2
x


×

[
−→
X G

−→
Y G

−→
Z G

]
. (2)

3. Strain field

Assumptions

• The cross-section contour is rigid.
• The shear deformation is disregarded.
• The twisting angle about the shear centre is reasonably small,

thus θ2x ≈ 0.
• The warping function of the section is constant along the beam.
• The displacement about the x-axis due to warping (defined

according to Vlassov’s theory) is equal to ωC
∂θx
∂x

where ωC is the
section warping function.

• The material is elastic, isotropic and homogeneous.

According to these hypotheses, the displacement field is
simplified as:

ū (x, y, z) = u − yθz + zθy + ωC
∂θx

∂x
= u − y

∂v

∂x
− z

∂w

∂x
+ ωC

∂θx

∂x
v̄ (x, y, z) = v − (z − zc) θx

w̄ (x, y, z) = w + (y − yc) θx.

(3)

The stress–strain field
Components εxx, εyy and εzz of Green’s strain tensor are given:

εxx =

[
∂ū

∂x

]
L
+

1
2
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∂ū
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)2

+

(
∂v̄
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)2
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(
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1
2
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1
2
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.

(4)
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