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Abstract

In strengthening an existing beam using externally bonded soffit plates, interfacial stresses play an important limiting role on the attainment of
full flexural capacity of the composite system. This paper deals with spatial and temporal distributions of shear and normal interfacial stresses in
a plated beam subjected to pulse loading. Interfacial stresses are related to displacement coordinates using a set of assumptions and the coupled
partial differential equations in the space of these displacement coordinates have been derived by application of dynamic equilibrium, compatibility
and constitutive relations. The equations have been solved numerically for the dynamic response. The results for three pulse loading cases have
been compared to finite element analyses and reasonable correlation is observed. Compared to dynamic or quasi-static ranges the correlation is
weaker when loading is in the impulsive range. Spatial stress distribution suggests that unlike static loading, in the case of pulse loading interfacial
stresses are not necessarily concentrated at the edges.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Analytical model; Debonding; Interfacial stress; Finite element analysis; UDL

1. Introduction

An existing beam can be strengthened or retrofitted by
bonding a steel or fibre-reinforced plastic (FRP) plate to its
soffit (Fig. 1). This plate-bonding technique has been used to
strengthen or rehabilitate reinforced concrete (RC) and steel
beams as well as beams of other materials [1–6]. The advantage
of this method is that work can be carried out fairly simply
and quickly with negligible disruption and minimum changes
to member dimensions. The success of this method has been
confirmed experimentally and reported [3,4,6]. Nevertheless,
there are limitations in the application of this technique. One
of the key issues regarding the effectiveness of this method of
strengthening, whether the bonded plates are of steel or FRP
materials, is that of debonding. Interfacial shear and normal
stresses are developed in a strengthened beam under loading
which must pass through the adhesive (resin) layer to be
transferred to the plate. The adhesive layer has less robustness
than the beam and strengthening plate and thus forms the weak
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link. Debonding of the soffit plate from the beam deters the full
ultimate flexural capacity of the composite system from being
achieved. Failure due to debonding under static loads has been
addressed by researchers [2,3,6].

Researchers [7–19] have proposed simple analytical
expressions to evaluate interfacial shear and normal stresses.
All existing solutions are based on two fundamental
assumptions which enable relatively simple closed-form
solutions to be obtained. The first assumption is that materials
of the beam, strengthening plate and resin are all linearly
elastic. The second assumption is that stresses are constant
across the thickness of the adhesive layer.

Smith and Teng [10] studied the relationship between the
existing solutions and proposed a solution based on necessarily
the same assumptions. They derived explicit expressions for
stresses for three types of loading viz. uniformly distributed
load (UDL), arbitrarily placed single-point load and four-point
bending. Rasheed and Pervaiz [12] formulated the second-order
differential equation of interface shear using the assumptions of
beam theory with a shear deformable adhesive layer for fully
and partially plated beams and for three types of loading viz.
UDL, three-point bending and four-point bending. However,
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Nomenclature

English

a length of strengthening plate
ai j generalized coordinates
Aa, Ab cross-sectional areas of materials a and b
bc width of the soffit plate
dc thickness of the adhesive layer
e distance between origin of coordinates in

materials a and b
Ea, Eb, Ec Young’s moduli of materials a, b and adhesive
E I

f , E II
f fracture energies for modes I and II

Fn
f force required to cause failure in tension (mode I)

F s
f force required to cause failure in shear (mode II)

F vector of known values/functions
fa, fb shear forces in materials a and b
Gc shear modulus of the adhesive
Ia, Ib moment of inertia of materials a and b about their

centroids
i Latin index
j Latin index
Kn, Ks normal and shear stiffnesses per unit length of

connection
L length of the beam/differential operator
L Laplace transform operator
L −1 inverse Laplace transform operator
ma, mb moments in materials a and b
q(x, t) arbitrary line load intensity field
q(t) uniform line load intensity field
r non-composite length of the beam
t time
ta, tb axial forces in materials a and b
td pulse load duration
T f time to separation in time to failure model
Tn natural period of the fundamental relevant

vibration mode
tr rise time to maximum temporal of the pulse load
u∗

a, u∗

b total displacement of materials a and b in the x-
direction

ua, ub displacements of materials a and b in the x-
direction at the origin of coordinates

W weight function vector
w1 displacement of non-composite length in the z-

direction
wa, wb displacements of materials a and b in the z-

direction
x coordinate axis in the longitudinal beam direction
z coordinate axis in the transverse beam direction
za, zb distance from the origin of coordinates in

materials a and b
Zia, Zib z-coordinate of interface in materials a and b

Greek

α Greek index

β Greek index
δ incremental symbol
εa, εb axial strains in materials a and b
ϕ shape function (on spatial distribution)
Ω1 domain of unstrengthened part
Ω2 domain of strengthened part
σa, σb axial stresses in materials a and b
σ̄n normal force per unit length in adhesive layer
τ̄s shear force per unit length in adhesive layer
Ḣ =

∂ H
∂t , H,x =

∂ H
∂x temporal and spatial derivatives

Fig. 1. Schematic of a concrete/steel beam strengthened on the tension part by
externally bonded steel/FRP plate.

their work does not include normal stresses; neither does
the shear stress satisfy the zero shear stress condition at the
end of the adhesive layer. Vilnay [16], Liu and Zhu [17],
Taljsten [18] and Malek et al. [19] considered the compatibility
of deformations to determine the interfacial stresses. Interfacial
shear stresses in the adhesive layer are related to the difference
between the longitudinal displacement at the base of the beam
and at the top of the soffit plate. The differences among
these solutions in determination of interfacial shear stresses
are due to the inclusion of different terms in determining
these longitudinal displacements. Interfacial normal stresses are
related to vertical deformation compatibility between the beam
and the bonded plate. Vilnay [16] and Taljsten [18] derived the
governing equation in terms of the vertical displacement of the
bonded plate. Liu and Zhu [17] and Malek et al. [19] derived
the governing equation in terms of interfacial normal stress.
However, these equations are interrelated and can be derived
from one another with some differences. Roberts and Haji-
Kazemi’s solution [9] is for UDL only. It is a two- stage solution
giving explicit expressions for both interfacial shear and normal
stresses at each stage. The superposition of the two stages will
lead to the complete result. However, normal stresses at stage
one as well as shear stresses at stage two are negligible.

None of the analyses discussed above satisfies the zero
shear stress condition at the end of the adhesive layer. For
this condition to be satisfied, a higher-order analysis has to
be carried out. The first such analysis has been conducted by
Rabinovich and Frostig [20]. Nevertheless, this analysis does
not provide explicit expressions for interfacial stresses. The
correctness of this analysis has also been questioned [15].

Interfacial shear stresses obtained from first-order beam
theory and from the analytical methods mentioned above are
almost the same except for the region around the free edge
of the plate. However, this small region is crucial as it is
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