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Abstract

Field testing and analytical studies to predict natural frequencies of steel stringer bridges are reviewed in this paper. A three-dimensional (3D)
finite element analysis (FEA) procedure using the commercial software ABAQUS, which efficiently captures the vibration characteristics of such
bridges, is proposed. Two continuous-span composite steel bridges dynamically (field) tested by others were used to validate the proposed FEA
model, which indicates excellent agreement between the analytical and field data. A natural frequency parametric study has been conducted by
utilizing the FEA procedure. Based on the regression analysis of the parametric study results, practical equations are proposed to predict the
natural frequencies of continuous-span composite steel bridges. The parametric study results are also compared with existing prediction methods,
showing that the proposed equations represent a significant improvement over the existing prediction methods.
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1. Introduction

High performance steel (HPS), specifically HPS 70W, was
first introduced in the United States bridge market in 1997.
With its added strength, greater durability, and improved
weldability, HPS allows engineers to design longer and
shallower spans, which may increase live-load deflections.
The AASHTO Standard Specifications [1] limits live-load
deflections to L/800 for ordinary bridges and L/1000 for
bridges in urban areas subjected to pedestrian use, where L
represents span length. Bridges designed by the AASHTO
LRFD Specifications [2] have an optional deflection limit.
Previous research by Roeder et al. [3] has shown that the
justification for the current AASHTO live-load deflection limits
is not clearly defined, and the best available information
indicates that these limits were developed to control undesirable
bridge vibration and to ensure user comfort. Because these
live-load deflection requirements often control the designs
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of HPS bridges, significant savings in design costs may be
achieved if more rational live-load serviceability criteria are
adopted.

The bridge design specifications of the Ontario Highway
Bridge Design Code (OHBDC) [4] and Australian Code [5]
do not explicitly employ live-load deflection limits. Instead, as
shown in Fig. 1 from OHBDC, vibration control is achieved
through a relationship between the first flexural natural
frequency of the bridge and live-load deflection. Australian
codes [5] use a similar curve to control superstructure vibration
of road bridges with footways. However, no specific equations
are provided regarding the calculation of the first flexural
natural frequency in the OHBDC. A simple beam equation
(discussed below) is suggested to calculate the frequencies of
simple-span bridges in the Australian code.

While several previous studies developed empirical expres-
sions [7-11] based on analytical and experimental work to
predict better the natural frequency of typical highway bridges,
these studies are limited in scope having focused on a narrow
range of parameters, and none of the reported results can be
coded. Also, various analytical models are available to predict
the natural frequencies of highway bridges, but most of the
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Fig. 1. Deflection limitations.

methods are of little use for design or too complicated to be
applied by practicing engineers.

This paper presents an FEA procedure using ABAQUS [6] to
analyze the natural frequencies of composite steel bridges. The
proposed procedure has been applied to the parametric study of
the first flexural natural frequency, which covers a wide range
of variables that may affect the natural frequencies of typical
composite steel bridges. Results from the FEA parametric study
are compared with existing frequency prediction equations,
indicating that the existing equations are not sufficiently
accurate. Alternatively, a set of more rational and practical
equations for predicting the first flexural natural frequency of
continuous-span composite steel bridges are developed based
on the parametric study results by using the multiple variable
nonlinear regression method. The effect of the parapets on the
natural frequencies is also investigated.

2. Background
2.1. Field testing

Empirical expressions have been proposed by several
researchers based on limited field testing and natural frequency
data. The scope of these works and the limits of these
expressions are discussed below.

Wood and Shepherd [7] measured vertical fundamental
frequencies on eight composite steel bridges. They developed
the expression, f = —0.21L + 10.3, for the frequency as
a function of span length. But this expression provides an
inadequate representation of frequency when compared to the
testing data.

Billing and Green [8] obtained natural frequencies from the
dynamic testing of 27 structures (12 steel spans). The frequency
equation, f = 110/Lmax, was proposed. But with limited data
on the diversity of construction, it is unreasonable to expect
that a simple relationship between frequency and span could
be codified.

Cantieni [9] conducted dynamical testing on 226 bridges,
with 205 (90.7%) of these bridges being prestressed concrete
bridges. Cantieni developed the expression, fy = 95.4 %
L0933 Extreme bridge structures were eliminated from
consideration in order to reduce the standard deviation, and
the results of only 100 bridges were used to propose the

following equation, fo = 90.6 % L9233, The variability
of the measurement values around the regression curves was
considerable for both equations. Tilly [10] added more field-
testing natural frequency results into Cantieni’s data such that
the total number of highway bridges considered was 871. Most
of these 871 bridges were concrete highway bridges. Based on
these bridges, the expression, fy = 82 * L;% was developed.

Dusseau [11] conducted ambient field testing for 12
highway bridges and proposed the empirical formula, f, =
588.118D‘0'4LS_1'45 , where D is the steel girder depth and L
is the span length. The empirical formulas only moderately fit

the field-measured frequencies.
2.2. Analytical studies

Previous researchers have used the Rayleigh—Ritz method,
and other rigorous approximate methods, as well as finite
element analysis to predict natural frequencies. However, most
of these analytical studies involved considerable computation.

Yamada and Veletsos [12] proposed the use of both the
Rayleigh—Ritz energy procedure and orthotropic plate theory
to obtain numerical solutions for the natural frequencies
of a number of simple-span right bridges. Veletsos and
Newmark [13] proposed a rigorous numerical method for
determining the natural frequencies of straight continuous
beams having rigid supports.

Biggs [14] developed the equation, f = AZ fy, for the first
natural frequencies of a simple beam with common classical
boundary conditions:

w [Eplpg

foo = m w
where

A = 1 for simple beam

A = 1.25 for pinned-clamped beam

A = 1.5 for clamped-clamped beam

L = span length

E I, = flexural rigidity of the composite steel girder

g = acceleration due to gravity

w = weight per unit length of the composite steel girder.

(D

A three-moment equation was also developed to obtain the
natural frequencies of normal modes for continuous uniform
beams.

Heins and Sahin [15] revised the simple beam equation to
calculate the first natural frequencies for curved box-girder
bridges utilizing a finite difference analysis.

Billing [16] conducted a parametric study using the lumped
mass method to develop normalized tables of natural frequency
factors for symmetric multi-span continuous uniform beams.
A procedure for the estimation of natural frequencies of
continuous bridges was presented which multiplied the base
first-frequency, fg, for a simple beam, determined from
Eq. (1), with a frequency factor from the presented tables.

Gorman [17] proposed a procedure by solving the
differential beam equation to calculate the natural frequencies
of beams subjected to prescribed classical and nonclassical
boundary conditions, such as a rotational spring support.
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