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a b s t r a c t

In this article, a system of twelve differential equations expressed in the global Cartesian coordinate
system to simulate the structural behavior of a general curved beam element, is presented. Different
shape geometry of the curved centroid line, shearing deformations, varying cross section area, non-
symmetric section and generalized loads are taken into account. The lower-triangular form of the system
of equations permits the determination of analytical results through successive simple integrations row
by row. Exact analytical solutions and expressions of transfer and stiffness matrices for widely spread
cases of curved beams such as the circular arch and balcony, are provided. Likewise, numerical accurate
results for the case of variable cross-section cantilever and circular helical beam are given in the examples
for verification.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

There exists much literature on structural analysis of curved
beamelements [1–6].Most of the authors approach this problemof
twisted elements, expressing the functions in natural coordinates
using the Frenet frame system of reference [7,8]. These models
to simulate the mechanical behavior of the problem, could be in
terms of virtual works and energy methods [9–11]; in separate
equations of equilibrium and kinematics [12–15]; or in terms of
a system of equations [16,17]. Particularly, the circular arch is a
problem very spread in this field [18–21]. Other types of curved
arch element as parabola and helix have been considered [22–26].
We explicitly mention Yu and his group’s work, for given
systematic research on curved beams, studying tangential and
shearing stresses in two-material curved beams [27–29] and the
generalized coordinate forwarping of naturally curved and twisted
beams with general cross-sectional shapes [30].
In the state of the art, the independent variable for curved

beams has been the arc length (naturally equations) or another
parameter (non-naturally equations), but always using the Frenet
mobile frame.
The authors that subscribe this article, presented a general

formulation for naturally [31] and non-naturally [32] curved beam
elements, taking into account shearing deformations, varying cross
section area, non-symmetric section and generalized loads.
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None of the above formulations have considered the curved
element in global Cartesian coordinates. The objective of this
article is to present this new system of differential equations
and show the capabilities and advantages respect with the other
models. The lower-triangular form of the system of equations
permits the determination of analytical results through successive
simple integrations row by row. Exact analytical solution and
expressions of transfer and stiffness matrices for well-known
cases of curved beams such as the circular arch and balcony, are
provided. Variable cross-section cantilever and a circular helical
beam are also compared with results given in the literature for
verification purposes.

2. Formulation. Differential systems

A curved beam is generated by a plane cross-section which
centroid P sweeps perpendicularly through all the points of an axis
line. The vector radius r = r (s) expresses this curved line, where s
(m) length of the arc, is the independent variable of the structural
problem. The reference coordinate system used to represent the
intervening known and unknown functions of the problem is the
Frenet frame Ptnb [33]. Its unit vectors tangent t, normal n and
binormal b are:

t = Dr n =
D2r∣∣D2r∣∣ b = t× n

where, D = d/ds is the derivative respect the parameter s.
The Frenet–Serret equations [34] describe the movement of

the frame system along the axis line. They are obtained with the
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versors tangent, normal and binormal derivateswith respect to the
arc length. Its matricial expression is:

D

[ t
n
b

]
=

[ 0 χ (s) 0
−χ (s) 0 τ (s)
0 −τ (s) 0

][ t
n
b

]
(1)

where χ = χ (s) (m−1) and τ = τ (s) (m−1) are the flexure
and torsion curvatures respectively, which represent the natural
equations of the centroid line.
Assuming the habitual principles and hypotheses of the

strength of materials [35] and considering the stresses associated
with the normal cross-section (σ , τn, τb) (N/m2), the geometric
characteristics of the section are: area A(s) (m2), shearing
coefficients αn(s), αnb(s), αbn(s), αb(s) andmoments of inertia It(s),
In(s), Ib(s), Inb(s) (m4). Longitudinal E(s) (N/m2) and transversal
G(s) (N/m2) elasticity moduli give the elastic condition of the
material.
Applying the equilibrium of forces, the following equation is

obtained:[D −χ 0
χ D −τ
0 τ D

][N
Vn
Vb

]
+

[qt
qn
qb

]
=

[0
0
0

]
. (2)

The vectors involved in the equilibrium (Fig. 1a) are
Internal forces Vt = Nt + Vnn + Vbb =

∫
A σdAt +

∫
A τndAn +∫

A τbdAb (N).
Force load qt = qt t+ qnn+ qbb (N/m).
The equation of moments is obtained applying the equilibrium

law as well:[
0 0 0
0 0 −1
0 1 0

][
N
Vn
Vb

]
+

[
D −χ 0
χ D −τ
0 τ D

][
T
Mn
Mb

]
+

[
mt
mn
mb

]
=

[
0
0
0

]
. (3)

In this case, the vectors are:
Internal momentsMt = T t+Mnn+Mbb =

∫
A (τbn− τnb) dAt+∫

A σbdAn−
∫
A σndAb (Nm).

Moment loadmt = mt t+mnn+mbb (Nm/m).

Fig. 1a. Internal forces and moments in Frenet frame.

Once the constitutive relations are defined, kinematics law
relates the rotations and displacements (Fig. 1b):
−
1
GIt

0 0

0 −
Ib

E(InIb − I2nb)
−

Inb
E(InIb − I2nb)

0 −
Inb

E(InIb − I2nb)
−

In
E(InIb − I2nb)


[ T
Mn
Mb

]

+

[D −χ 0
χ D −τ
0 τ D

][
θt
θn
θb

]
−

[
Θt
Θn
Θb

]
=

[0
0
0

]
. (4)

Rotations components are given by θt = θt t+ θnn+ θbb (rad).
Rotation load2t = Θt t+Θnn+Θbb (rad/m).

Fig. 1b. Deflections in Frenet frame.

Following the same procedure, the displacement equation is
expressed:
−
1
EA

0 0

0 −
αn

GA
−
αnb

GA
0 −

αnb

GA
−
αb

GA


[N
Vn
Vb

]
+

[0 0 0
0 0 −1
0 1 0

][
θt
θn
θb

]

+

[D −χ 0
χ D −τ
0 τ D

][u
v
w

]
−

[
∆t
∆n
∆b

]
=

[0
0
0

]
(5)

where displacement components are denoted as δt = ut + vn
+ wb (m) and displacement load1t = ∆t t+∆nn+∆bb (m/m)
Eqs. (2)–(5) are related and they build the system of linear

ordinary differential equations which simulates the structural
behaviour of a curved beam element [31]: See Box I.
It is important to note the strict order of the twelve functions

in the equation. Forces produce moments, moments produce
rotations and rotations produce displacements, in terms of the load
applied. All functions are interconnected. This arranged format
has permitted to obtain directly numerical results and matrices
expressions [36].
The system (6) given in Box I is associated to the Frenet frame

in natural coordinates of the curved line.
It is possible to implement a change of basis and express the

functions (Fig. 2) in a global coordinate system Pxyz which unit
vectors are i, j and k:[ t
n
b

]
=

[
υtx υty υtz
υnx υny υnz
υbx υby υbz

][ i
j
k

]
.

The different coefficients of the basis change matrix represent
the direction cosines.
The differential system (6) given in Box I is transformed into

global Cartesian coordinates in Box II.
The components of internal forces, moments, rotations and

displacements involved in Eq. (7) given in Box II are referred to the
global absolute coordinate system.
This new general expression of the differential system, which

simulates the structural behaviour of the linear element, has a
lower-triangular form. That important property permits to solve
analytically the differential equation system using successive
integrations.
The analytic solution will exist if primitive functions of those

integral equations are known. Different numerical methods for
solving integral equations (simple numerical integration) are also
suitable to reach accurate results [37].
Eq. (7) given in Box II can be particularized for curved beams in

a plane. Assuming that the curve is contained in the xy plane with
height z = 0, the unit vectors of the basis k and b are parallel and
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