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a b s t r a c t

The paper presents a simple approach to evaluate the response of statically determined steel beams
reinforced by carbon fiber reinforced polymer (CFRP) plates in the elastic–plastic regime. The formulation
is applied to two cases: simply supported beams both with distributed and concentrated load. The
proposed solution is validated by comparison with experimental data available in the literature.
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1. Introduction

Civil structures and infrastructures may become structurally
inadequate for different reasons: e.g. deterioration of materials,
variation of the loads acting on the structure, design errors,
etc. Particularly, in the case of steel structures the load bearing
capacity may be drastically reduced by fatigue and corrosion
damage. Standard techniques of rehabilitation consist mainly of
the application of steel plates where the structure is damaged;
but, therefore, problems such as steel corrosion still remain and
difficulty in fitting complex profiles can arise.
The use of CFRP to repair and rehabilitate damaged steel and

concrete structures is continuously increasing due to the well-
known highmechanical properties of this material, with particular
reference to its very high strength to density ratio, see [1]. For
instance the retrofitting of existing beams by bonding a CFRP
plate to its soffit has numerous advantages, such as the increase
in stiffness and ultimate flexural capacity. Despite its intrinsic
cost, the possibility to shape the CFRP lamina and to avoid the
cumbersome work associated with the standard rehabilitation
techniques and finally the very low dead weight added makes the
overall cost for strengthening to be reduced. Many examples from
the literature show the effective use of CFRP in civil engineering,
see e.g. [2–8].

∗ Tel.: +39 0223994320; fax: +39 0223994369.
E-mail address:massimiliano.bocciarelli@polimi.it.

In such retrofitted structures, collapse may consist of the
following scenarios: debonding of the CFRP plate, rupture of the
carbon reinforcement and achievement of the maximum flexural
capacity of the composite section, see [9]. Debonding of the CFRP
plate is one of the most important failure modes, since it prevents
the achievement of the full flexural capacity.
Reinforcement of structures with CFRP lamina is a subject of

intensive research carried out from theoretical, experimental and
applicative standpoints; see recently, e.g.: [10–12]. In this paper
we propose a simple approach to evaluate the response, in terms
of interface shear stress, CFRP axial force and maximum flexural
capacity of statically determined beams reinforced by CFRP strips
taking into account the non linear elasto-plastic material behavior.
The scope of the present work is to provide a practical and
simple approach for the design at the ultimate limit state (ULS)
of reinforced structures against the above mentioned potential
failure modes.
To this purpose it is necessary to know the mechanical

properties governing the interface behavior (e.g. fracture energy,
mode I–II resistances). There are several methods in order to
correctly estimate these properties: the double strap joint test,
see [13–15]; the single strap joint test as in [16,17]; the three
point bending test as in [18,19]; the peel test to measure interface
properties in case of mode-I loading, see [20], and the pure shear
test combined with an inverse approach as proposed in [21].
In the case of steel structures the interaction of delamination

process with steel plastic deformation is worth studying, in order
to provide guidelines that guarantee that not only the local
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Fig. 1. Assumed geometry of a reinforced I-section.

strength is recovered by the strengthening process, but also a
certain degree of ductility is rehabilitated, the last being a topic of
high concern in the seismic design, see for instance [22].
The determination of interfacial stresses and CFRP axial force

under the assumption of linear elastic response of the materials
has already been pursued by different authors, see e.g. [23–25].
For instance these authors have shown that in case of linear elastic
response the interface shear stress assumes its maximum value at
the reinforcement ends.
The solution proposed typically applies to the case of reinforced

steel beams, but it holds in each case where the material behavior
is ductile. The main limitations of the solution proposed consists
of the fact that it is applicable only to statically determined beams
and it is valid only at a certain distance from the reinforcement
ends, i.e. where the response of the structure is not influenced by
the local effects due to the abrupt termination of the carbon plate,
which, however, are alreadywell captured by the abovementioned
linear elastic solutions [23–25].

2. Formulation

Once the bending moment distribution acting in the composite
beam, say MTOT , has been computed (by simple equilibrium
equations since the composite beam is assumed to be statically
determined), the response in the elastic–plastic regime, is derived
here by simple sectional analysis. The proposed solution is based
on the following assumptions:

• linear elastic behavior of CFRP and elastic perfectly plasticity for
steel;
• no slippage between steel and CFRP;
• the contribution of the adhesive layer between steel and CFRP
to the bending and axial stiffness of the section is negligible;
• the bending stiffness of the CFRP is negligible;
• plane sections remain plane;
• the CFRP axial stress is assumed to be uniform and equal to the
value assumed in the center of gravity of the carbon section.

The derivation is here restricted, without loss of generality, to
an I-section, see Fig. 1, however it can be extended to other sections
of arbitrary shape.
According to the above hypotheses, the equations governing the

response of the section are as follows, see Fig. 2:

• Compatibility equation:

ε(y) = η + yχ. (1)

• Constitutive laws:

σc = Ecε (2)

σs =


Esε if |ε| ≤

σ0

Es
σ0 if |ε| >

σ0

Es
.

(3)

• Equilibrium equations:∫
ATOT

σdA = 0 (4)∫
ATOT
yσdA = MTOT (5)

where: subscripts c and s refer to CFRP and steel, respectively; σ
and ε are the axial stress and strain; Ec , Es are the elastic moduli of
CFRP and steel, respectively, and σ0 is the steel yield stress.
The CFRP axial force reads:

Nc =
∫
ACFRP

σdA = σchb. (6)

Moreover, as suggested by Fig. 3, the horizontal equilibrium in the
composite lamina imposes that the interface shear stress reads:

τi =
1
b
·
dNc
dx

(7)

where coordinate x starts from the beam support, as visualized in
Fig. 5.
In the proposed formulation the interface normal stress

is assumed equal to zero; however this is not a restrictive
assumption, since the normal stress is significant only at the
reinforcement ends, where the present solution does not apply.

2.1. Elastic section

When thematerial behavior is linear elastic the above equations
lead to the transformed section approach, which provides the
following formula to compute the CFRP force:

Nc = nbh
MTOT
Ihom

(
H +

h
2
− vG

)
(8)

being vG the distance of the center of gravity of the transformed
section from the top of the section, n = Ec/Es and Ihom the second
moment of inertia of the transformed section.
Combining Eqs. (7) and (8) it follows that:

τi = nh
1
Ihom

dMTOT
dx

(
H +

h
2
− vG

)
(9)

which coincides with the classical Jourasky solution.

2.2. Partially plastic section

Due to the geometry of the section different cases must be
considered depending on the position of the elastic zone with
respect to the web and flange of the I-section, see Fig. 2, namely:

• case (1): λ1 ≤ t and λ2 ≤ t
• case (2): t < λ1 ≤ H − t and λ2 ≤ t
• case (3): t < λ1 ≤ H − t and λ2 > t
• case (4): λ1 > H − t and λ2 ≤ t
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