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a b s t r a c t

In this study, linear buckling analysis of unstiffened plates under interacting patch loading and bending
moment is developed. The study focuses on estimation of the elastic critical load due to patch load, and
concomitant linearly variable compressive stress in the normal direction, with analysis of mechanisms
of plate instability.
The present work proposes simple design equations for the elastic critical load of rectangular plates

subjected to both patch load, and uniform compressive stress, and also patch load with linearly varying
compressive stresses for the serviceability limit state. The proposed analytical relationship, obtained
on the basis of parametric numerical analyses, is validated by comparing analytical predictions with
experimental tests from the literature, and full numerical models; good agreement was obtained for
practical situations in steel bridge design, such as the erection of steel bridges with the launching
construction technique. In the launch phase, web panels of the open-section girders are subjected to
concentrated loads applied to the lower flange, and considerable bending moment.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Steel girder web panels subjected to interacting patch loading
and bending moment at the serviceability limit state has not been
deeply studied in the literature. However, this is a very common
load situation for incremental launching of bridge girders, inwhich
girders are subjected to concentrated loads applied to the inferior
flange and to considerable bending moment. The aim of this paper
is to propose a simple design formulation for the elastic critical
load in steel web panels subjected to patch load, and concomitant
linearly variable compressive stress in the normal direction for the
serviceability limit state.
A typical welded double-T cross-section is considered, sub-

jected to a uniformly distributed load along length lo on the upper
flange and to bending momentMz acting in the plane of the plate.
The generic panel has length (between two ribs) a, height h and
thickness t . Linear-elastic and isotropic steel with Young’s modu-
lus E = 206 000 N/mm2 and Poisson’s ratio ν = 0.3 is examined.
The common conservative assumption of neglecting the

contribution of the upper and lower flanges, and the vertical
stiffeners of the beam in determining of the linear buckling load
of an open-section girder is adopted (Lagerqvist and Johansson
1996 [1]). The boundary conditions are as follows (Fig. 1): z-
displacement is restrained for the four edges (1, 2, 3, 4) and y-
displacement is also restrained for the vertical edges (2, 4). The
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plate is subjected to vertical concentrated load Fy applied at edge
1 and bending momentMz acting at edges 2 and 4. A plate without
out-of-plane imperfections is considered, and the elastic critical
load corresponds to the first linear buckling mode (Massonnet
and Janss 1981 [2]). The topic of linear stability analysis of simply
supported rectangular plates is amply discussed in the literature
(Shahabian and Roberts 1999 [3], Ren and Tong 2005 [4]), but
the common design situation of plates subjected to both patch
load and bending moment has not been deeply studied and, to
the authors’ knowledge, there are no simple design relationships
which estimate the elastic critical load for this situation.
The results of this work may be used for design purposes in

practical applications in steel bridge construction, particularly for
the incremental launching technique.

2. Linear buckling analysis

Finite Element Code Straus [5] is used in the following buckling
analyses. It solves linear buckling problems, by finding the
buckling load through the solution of the eigenvalue problem. The
lower eigenvalue corresponds to the elastic critical load, and the
eigenvector defines the corresponding deformed shape.
Stiffness matrix K is formed from the conventional matrix of

small deformations, and has constant value KE and matrix Ks,
which takes into account the effect of stress σ on the plate. The
global stiffnessmatrix of the panel at stress level σ0may bewritten
as follows:

K (σ0) = KE + Ks(σ0). (1)
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Notation

a plate width;
c1 coefficient depending on h/a;
c2 coefficient depending on lo/a;
c3 coefficient depending on Fx;
D flexural rigidity of plate;
E Young’s modulus;
Fx horizontal load applied to vertical edges;
Fcr,x first linear buckling load in x direction;
Fy patch load applied in y direction;
Fcr,y first linear buckling load in y direction;
fyd design yield strength;
h plate height;
k linear buckling coefficient;
kσ ,p buckling coefficient following plate stability theory;
lo patch load length;
Mz bending moment acting around z axis;
t plate thickness;
V shear force;
α panel aspect ratio (=a/h);
λ plate slenderness;
λ1 first eigenvector
ψ stress ratio;
σcr,p elastic critical stress;
σE Eulerian critical stress;
σsup stress acting on upper edge;
σinf stress acting on lower edge;
σx stress acting in x direction;
σ0 compressive stress;
ν Poisson’s ratio.

Fig. 1. Plate geometry with load scheme and girder cross-section.

When the stress level reaches λσ0, the stiffness matrix becomes:

K (λσ0) = KE + Ks(λσ0) = KE + λKs(σ0). (2)

The equation that governs the behaviour of the plate is:

dF = [KE + λKs(σ0)]du (3)

where du is the vector of increasing displacement and dF the vector
of increasing load. The determinant of the matrix becomes null at
buckling, and an increase in displacementwithout a corresponding
increase in load occurs:

[KE + λKs(σ0)]du = 0. (4)

This is an eigenvalue problem, the solution to which corresponds
to the lower eigenvalue λ1 related to critical elastic stress, at which
buckling occurs:

σcr = λ1σ0. (5)

3. Plate under patch load action only

According to the classical theory of plate stability, the elastic
critical load of a simply supported plate is generally calculated
through the following well-known equation (see, for example,
Chatterjee 2003 [6]):

Fcr,y = k
π2E

12(1− ν2)
t3

h
. (6)

The term D = Et3/12(1 − ν2) is the flexural stiffness of the
plate. The elastic critical load mainly depends on the geometry
of the plate (thickness t and height h) that defines slenderness λ.
Formulas to calculate the buckling coefficient for varying restraints
and load conditions are proposed in a number of papers. Lagerqvist
and Johansson (1996) [1] proposed empirical equations for the
buckling coefficient, also taking into account the influence of flange
geometry.
Load length is an important parameter for buckling analysis in

patch load conditions: the influence of load length is shown in
Fig. 2, where the same platewith a/h >> 1, and subjected to loads
with different lengths lo, shows different instability configurations.
A plate with a = 4500 mm, h = 650 mm, t = 16 mm (α =
a/h = 6.9 and λ = h/t = 41), lo = 1200 mm (Fig. 2(a)) and lo =
350mm(Fig. 2(b))was studiedwith FE code Straus7 [5], using plate
elements with four nodes (Quad4), and six degrees of freedom for
each node. The four plate edges were simply supported in the out-
of-plane direction, and vertical translation was restrained at the
lateral edges to prevent rigid body movements.
Fig. 2(a) and (b) show that instabilitymainly occurs in the upper

part of the plate, with more than one half-wave (three in Fig. 2(a))
for large load lengths lo with respect to plate length a, whereas
instability involves the whole plate height with one half-wave
(Fig. 2(b)) for short load lengths lo.
Duchene and Maquoi (1994) [7] proposed some formulas to

calculate linear buckling coefficient k in the following ranges of
panel aspect ratio: 0.5 ≤ α ≤ 1.8, 1.8 ≤ α ≤ 4 and α ≥ 4.
According to an extensive linear buckling parametric numerical
analysis performed with FE code Straus7 [5], with plate geometry
and load length as parameters, the following formula is proposed
here for buckling coefficient k:

k = 3.2048
c1
c2
. (7)

c1 and c2 may be obtained with two polynomial relationships,
which take into account the influence of the ratio between plate
height h and plate width a and the ratio between the length of load
lo and plate width a respectively:
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c1 and c2, may be also obtained with a lower degree of
approximation, with simpler polynomial equations:
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