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Abstract

This paper presents the effect of inclination on the static behaviors of inclined variable-arc-length (VAL) beams. An updated Lagrangian
formulation of the VAL beams has been developed via the variational approach. The first variation of the total potential energy is evaluated
to establish the system of nonlinear finite element equations. These equations are then solved by using the iterative process to obtain static
configurations. The second variation of the total potential energy is performed to determine the tangent stiffness matrix of the VAL beams. The
critical values of uniform self-weight of the inclined VAL beams are obtained by equating the determinant of the tangent stiffness to zero. The
critical uniform self-weights obtained from the finite element method are validated by those derived from the shooting method. The effects of
inclination on the deflection, bending moment diagram, and axial force diagram at critical state are investigated herein.
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1. Introduction

Variable-arc-length (VAL) beam is a class of beam of which
an end is a hinged support and the other end at a fixed distance
is propped by a frictionless roller over which the beam can
slide freely. In previous studies, the buckling of horizontal
VAL beams subjected to end moments and/or point loads were
presented by using elliptic integrals [1-5] in order to attain
the exact solutions. Nevertheless, the solutions of VAL beams
subjected to uniform self-weight cannot be obtained by the
elliptic integral procedure. Therefore, the finite element method
(FEM) and the shooting method (SM) are more efficient for use
in order to take care of this problem. The numerical results for
large deflection of horizontal VAL beams subjected to uniform
self-weight, which were obtained from FEM and SM, were
previously validated by the experimental examples [6].

From the literature review, the static behaviors for inclined
VAL beam subjected to uniform self-weight have not yet been
reported elsewhere. The major objective of this paper is thus
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to evaluate the buckling behaviors of inclined VAL beams
subjected to uniform self-weight. Effects of inclination on the
static behaviors of VAL beams are separately presented in
two cases: shift-up and shift-down. In each case, the values
of critical uniform self-weight of the inclined VAL beams
with various inclinations are determined by the finite element
method. These results are then independently checked by the
shooting method.

The following assumptions are made throughout this
analysis:

(1) An axial movement is unrestrained at the frictionless roller;
therefore, the effect of axial deformation is not included in
this analysis.

(2) The beam material is assumed to be homogeneous,
isotropic, and linearly elastic.

(3) A cross-section of the beam remains plane and remains
perpendicular to the axis.

(4) The effect of shear and torsional rigidities is neglected.

In practice, the inclined VAL beams are often considered
for uses in either static or dynamic analyses of a flexible
pipe/riser in offshore engineering applications where the
flexible pipe/riser is generally used as a linkage between the
floating platform and the transport vessel. The recent findings
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Fig. 1. (a) Equilibrium configuration of shift-up inclined VAL beam, (b) Equilibrium configuration of shift-down inclined VAL beam.

from this study will benefit the analysis and design of the
flexible marine pipes/risers, as well as serve as the benchmarks
for the future experimental investigations.

2. Finite element method
2.1. The updated Lagrangian formulation

Fig. 1(a) and (b) show static configurations of an inclined
VAL beam. The beam is supported by a pin at End A and by a
frictionless roller at End B. End B locates at a fixed distance L
from End A with the different level /. The span length L is a
known constant whilst the total arc-length at equilibrium state
S; is an unknown parameter. Due to the uniform self-weight of
beam w (weight per unit arc-length), the beam deflects with
the total deflection y; which is decomposed into linear and
nonlinear parts, y; and y, respectively.

The first variation of the total potential energy of the beam
in the updated Lagrangian Cartesian coordinates [7] is

smo = [F1EDY oo 2BV
s = 2152 T s 2)7/2
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The first and second terms in Eq. (1) are the consequence of
bending energy. The third term is attributed to the axial force.

)]

The last term is the resultant of the uniform self-weight of the
beam. The superscript (') represents the derivatives with respect
to x. The nomenclatures E, I, and N in Eq. (1) are the elastic
modulus of the beam, the moment of inertia of the beam section,
and the axial tension, respectively.

2.2. Solution procedure for large displacement analysis

At an equilibrium state, 6wy = 0 is applied. Because
the total arc-length of the beam is not given earlier, the use
of arc-length as the independent variable, as commonly used
in conventional beam element, may not be convenient for
establishing the boundary conditions. However, in this case
the span length is known while the total arc-length has to
be determined. Therefore, the discretization of span length
is used instead of the total unknown arc-length. By using
this technique, the boundary conditions can be conveniently
established. Moreover, the discretization of span length yields
span elements with known element length instead of beam
elements with unknown element length (see Fig. 2). The linear
part y; can be directly obtained from the linear proportion
with the specified coordinate x, while the nonlinear part y, is
approximated by the fifth order polynomial, thus

Ya (x) = [N]{gs} )

in which |N] is the row matrix of the fifth order shape
functions; and {gy} is the corresponding local degrees of

Vs (X) = yq (x) + 31 (x),
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