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Abstract

Power series solutions for stresses and displacements in functionally-graded cylindrical vessels subjected to internal pressure alone are obtained
using the infinitesimal theory of elasticity. The material is assumed to be isotropic with constant Poisson’s ratio and exponentially-varying elastic
modulus through the thickness. Stress distributions depending on an inhomogeneity constant are calculated and presented in the form of graphs.
The inhomogeneity constant which includes continuously varying volume fraction of the constituents is empirically determined. The values used
in this study are arbitrarily chosen to demonstrate the effect of inhomogeneity on stress distribution.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have attracted much
interest primarily as heat-shielding materials. The possibility
of tailoring the desired thermomechanical properties holds
enormous application potential for FGMs. Aside from the
thermal barrier coatings, some of the potential applications of
FGMs include their use as interfacial zones to improve the
bonding strength and to reduce residual stresses in bonded
dissimilar materials and as wear-resistant layers such as gears,
cams, ball and roller bearings and machine tools (Erdogan
[1]). Most of the studies conducted on FGMs are confined
to the analysis of thermal stress and deformation (see, e.g.,
Wetherhold et al. [2], Takezono et al. [3], Zhang et al. [4],
Obata and Noda [5]). The works concerning the stress analysis
of cylindrical and spherical structural elements involve finite
elements and other numerical techniques due to the nature
of functions chosen to describe the inhomogeneous properties
(Fukui and Yamanaka, [6] Loy et al. [7], Salzar [8]).

Developing sufficiently general methods for solving specific
boundary value problems in solid mechanics involving
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inhomogeneous media has always been difficult. Because
of this difficulty, all existing treatments dealing with the
mechanics of inhomogeneous solids are based on a simple
function representing material inhomogeneity. For example, in
the half-plane elasticity problems considered by Kassir and
Chauprasert [9] and Kassir [10] it is assumed that the shear
modulus is a power function of the depth coordinate of the
form µ(y) = µ0 ym and the Poisson’s ratio ν is constant.
Modeling of density and stiffness by the same power-law are
proposed by Bert and Niedenfuhr [11], Reddy and Srinath
[12] and Gurushankar [13]. The functionally gradient material
considered by Loy et al. [7] is composed of stainless steel
and nickel where the volume fractions follow a power-law
distribution. Closed-form solutions are obtained by Tutuncu
and Ozturk [14] for cylindrical and spherical vessels with
variable elastic properties obeying a simple power law through
the wall thickness which resulted in simple Euler–Cauchy
equations whose solutions were readily available. A similar
work was also published by Horgan and Chan [15] where
it was noted that increasing the positive exponent of the
radial coordinate provided a stress shielding effect whereas
decreasing it created stress amplification. Three-dimensional
solutions for FGM plates are obtained numerically by Reddy
and Cheng [16] using the transfer matrix method. The
overall material properties were calculated from the constituent
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properties by the well-known Mori–Tanaka method. On the
stress analysis of piezoelectric plates where the piezoelectric
properties are functionally graded the work by Lim and He
[17] presents exact solutions. Similar works on piezoelectric
FGM plates are also presented by Liew et al. [18,19]. Free
vibration analysis of such plates is performed by Lim et al. [20]
where the transfer matrix method combined with the asymptotic
expansion method is used. The parametric resonance of FGM
rectangular plates is studied by Ng et al. [21] where Hamilton’s
principle and Bolotin’s method are used to determine the
instability regions.

The present paper aims to present stress and displacement
solutions in thick-walled cylinders subjected to internal
pressure only. The material is assumed to be isotropic with
exponentially-varying elastic modulus through the thickness
as E(r) = E0eβr yielding governing equations solutions of
which are not readily available and can only be obtained in
the form of power series by employing the lengthy process
of Frobenius method. When the functional dependence is
assumed for both the elastic modulus and Poisson’s ratio a
simple tractable solution cannot be obtained necessitating the
employment of numerical and perturbation techniques. For the
sake of simplicity the insignificant influence of the variation in
Poisson’s ratio on stresses is neglected and a constant Poisson’s
ratio ν is assumed throughout the thickness as it is done in
numerous works in the literature such as those by Erdogan [1],
Horgan and Chan [15], Chen and Erdogan [22] and Jabbari et al.
[23]. Various β values are used to demonstrate the effect of
inhomogeneity on the stress distribution. The arbitrary values
used in this study for the inhomogeneity constant β do not
necessarily represent a certain material.

2. Analysis

The stress distribution in thick-walled cylindrical pressure
vessels will be calculated. Elastic modulus for the isotropic
material is assumed to vary as

E(r) = E0eβr . (1)

Employing the plain-strain assumption and axisymmetry, the
strain–displacement and constitutive equations are

εr =
du
dr
, εθ =

u
r
, γrθ = 0 (2)

σr = C11εr + C12εθ

σθ = C12εr + C11εθ
(3a,b)

where, with ν0 being the Poisson’s ratio,

C11 = C0
11eβr

=

(
E0(1 − ν0)

(1 + ν0)(1 − 2ν0)

)
eβr ve C12

= C0
12eβr

=

(
E0ν0

(1 + ν0)(1 − 2ν0)

)
eβr .

The only nontrivial equilibrium equation is

dσr

dr
+
σr − σθ

r
= 0. (4)

Using Eqs. (1)–(3), the governing equation of radial
displacement becomes

r2u′′
+ r(1 + rβ)u′

+ (νβr − 1)u = 0 (5)

where ν =
C12
C11

=
ν0

1−ν0
.

Eq. (5) can be solved by Frobenius Method with the solution
in the form

u(r) =

∞∑
k=0

akrk+s . (6)

Substituting in Eq. (5) gives the recurrence formula

ak = −
(k + s − 1)+ ν

(k + s + 1)(k + s − 1)
βak−1 (7)

and the indicial equation (s − 1)(s + 1) = 0. Since the roots
of the indicial equation differ by an integer (s1 = 1, s2 = −1)
only one of the solutions is in the form of Eq. (6). Expansion of
the recurrence formula for k = 1, 2, 3, . . . gives the coefficients
ak in terms of a0 and Gamma functions as:

ak =
(−1)k0(2 + s)20(k + s + ν)

0(s + ν)0(k + s)0(k + 2 + s)(1 + s)s
βka0. (8)

For the first root s = 1, taking the nonzero arbitrary constant
a0 = 1 the recurrence relation takes the following form:

ak =
2(−1)k

k!(k + 2)!
0(k + 1 + ν)

0(1 + ν)
βk . (9)

Here, for an integer k, the property 0(k + 1) = k! has been
used. The first solution is given as

u1 =

∞∑
k=0

akrk+1. (10)

The second solution for s = −1 will be of the form

u2 =

∞∑
k=0

{(s + 1)ak(s)rk+s
}s=−1 log r

+

∞∑
k=0

{
d
ds

[(s + 1)ak(s)]
}

s=−1
rk−1. (11)

The multiplier of the logarithmic term is expanded first as
∞∑

k=0
{(s + 1)ak(s)r

k+s
}s=−1

= a0

∞∑
k=0

[
(s + 1)(−1)k0(2 + s)20(k + s + ν)

0(s + ν)0(k + s)0(k + 2 + s)(1 + s)s
βkrk+s

]
s=−1

= a0

∞∑
k=0

(−1)k−10(k − 1 + ν)

0(ν − 1)0(k − 1)0(k + 1)
βkrk−1

= a0β
2

∞∑
k=0

(−1)k+10(k + 1 + ν)

0(ν − 1)k!(k + 2)!
βkrk+1. (12)

It should be noted that since 0(0) = ∞ and 0(−1) = ∞,
the summation should start from k = 2. Subsequently, the
indices are changed as k → k + 2 to obtain the final form.



Download	English	Version:

https://daneshyari.com/en/article/269138

Download	Persian	Version:

https://daneshyari.com/article/269138

Daneshyari.com

https://daneshyari.com/en/article/269138
https://daneshyari.com/article/269138
https://daneshyari.com/

