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Abstract

This paper is concerned with the hydroelastic analysis of a pontoon-type circular very large floating structure (VLFS). The coupled
fluid–structure interaction problem may be solved by using the modal expansion method in the frequency domain. It involves, firstly, the
decomposition of the deflection of a circular Mindlin plate with free edges into vibration modes which can be obtained in an exact manner.
Then the hydrodynamic diffraction and radiation forces are evaluated by using eigenfunction expansion matching method that is also done in an
exact manner. The hydroelastic equation of motion is solved by the Rayleigh–Ritz method for the modal amplitudes, and then the modal responses
are summed up to obtain the total response. The very accurate deflections and stress-resultants of uniform circular VLFSs presented herein are
valuable as they serve as benchmark solutions to check the numerical methods for hydroelastic analysis of VLFSs.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The hydroelastic analysis of pontoon-type, very large
floating structures (VLFSs) has attracted the attention of many
Japanese engineers and researchers working in the offshore
construction industry. This interest was heightened by the
building of large floating oil storage facilities off the coasts
of Kamigoto and Shirashima Islands and more so by the
construction of the 1 km long test runway (commonly referred
to as the Mega-Float) in Tokyo Bay in 1998. Such floating
structures are very flexible and the elastic deformations due
to wave action are more crucial than the rigid body motions.
Many papers published on the hydroelastic analysis of VLFSs
focus on a rectangular planform, mainly because it is the
basic shape for construction and its vibration modes may be
approximated by the products of natural modes of free–free
beams that satisfy the natural boundary conditions (see for
example Ref. [1]). A VLFS of a general planform shape
requires numerical methods for analysis, and the boundary
element method and finite element method are frequently
used. As performing a rigorous hydroelastic analysis requires
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an enormous computational effort, researchers have proposed
various techniques to improve the efficacy of the boundary
element and finite element method [2–8]. Kashiwagi [9] and
Watanabe et al. [10] presented a review of these methods.

In order to validate these numerical methods and to check
the accuracy and convergence of the hydroelastic responses,
analytical solutions are vitally needed. To this end, we
consider circular VLFSs as accurate/exact analytical solutions
may be obtained for benchmarking purposes. Hamamoto
and Tanaka [11] and Hamamoto [12] were early researchers
working on circular VLFSs. They developed an analytical
approach to predict the dynamic response of a flexible
circular floating island subjected to stochastic wind-waves
and seaquakes. Zilman and Miloh [13] obtained closed form
solutions for the hydroelastic response of a circular floating
thin plate in shallow water. Tsubogo [14,15] solved the same
floating circular plate problem independently. However, the
assumption of shallow water limits the applicability range. The
extension of Zilman and Miloh’s method to a finite water depth
was recently made by Peter et al. [16].

In this paper, we derive the governing equations and
analytical expressions for the hydroelastic responses of a
circular VLFS under wave action, considering a finite water
depth and the effects of transverse shear deformation and

0141-0296/$ - see front matterc© 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2005.08.014

http://www.elsevier.com/locate/engstruct


424 E. Watanabe et al. / Engineering Structures 28 (2006) 423–430

rotary inertia on the plate deformation. Earlier aforementioned
studies adopted the classical thin plate theory that neglects
these effects. The presented accurate hydroelastic responses for
the circular VLFS should be extremely useful as benchmark
solutions in the development of techniques and software for
hydroelastic analysis.

In our approach for analysis, the coupled fluid–structure
interaction problem may be solved by firstly decomposing
the unknown deflection of the plate (modeled by the Mindlin
plate theory) into modal functions associated with a freely
vibrating plate in air. The modal functions are obtained in an
exact manner by solving analytically the governing equations
of a vibrating Mindlin circular plate in dry air. The second
step involves substituting the exact modal functions into
the hydrodynamic equations and solving the boundary value
problem using the eigenfunction expansion matching method
which is also an analytical approach. The modal amplitudes
for the set of equations of motion obtained are then back
substituted into the modal functions and the stress-resultants
for the deflections and stress-resultants of the VLFS. Two
numerical examples are given to illustrate the method and the
accurate results for deflections and stress-resultants obtained
are presented graphically with their peak values tabulated for
easy comparison when developing numerical methods and
software for hydroelastic analysis of VLFSs.

2. Basic assumptions, equations and boundary conditions
for a circular VLFS

In a basic hydroelastic analysis of pontoon-type VLFSs, the
following assumptions are usually made:

• The VLFS is modeled as a flat plate with free edges.
• The fluid is incompressible, inviscid and its motion is

irrotational so that the velocity potential exists.
• The amplitude of the incident wave and the motions of

the VLFS are both small and only the vertical motion of
structure is considered.

• There are no gaps between the VLFS and the water surface.

The fluid–structure system and the cylindrical coordinate
system are shown inFig. 1. The origin of the coordinate system
is on the flat seabed and thez-axis is pointing upwards. The
undisturbed free surface is on the planez = d, and the seabed
is assumed to be flat atz = 0. The floating, flat, circular
plate has a radius ofR and a uniform thicknessh. The zero
draft is assumed for simplifying the fluid-domain analysis. The
sinusoidal plane wave is assumed to be incident atθ = 0.
The problem at hand is to determine the deflections and stress-
resultants of the uniform circular plate under the action of the
incident wave. Below, the governing equations and boundary
conditions for the hydroelastic analysis are presented. The
hydroelastic analysis is performed in the frequency domain.

Based on the second assumption given above and
considering time-harmonic motions with the complex time
dependence ei� t being applied to all first-order oscillatory
quantities, where i represents the imaginary unit,� the angular

Fig. 1. Geometry of a uniform circular VLFS and coordinate system.

frequency of the wave andt the time, the complex velocity
potentialφ(r, θ, z) is governed by the Laplace equation:

∇2φ(r, θ, z) = 0 (1)

in the fluid domain. The potential must satisfy the following
boundary conditions on the free surface, on the seabed, and on
the wetted bottom surface of the floating body:

∂φ(r, θ, z)

∂z
= � 2

g
φ(r, θ, z) on z = d, r > R (2)

∂φ(r, θ, z)

∂z
= 0 onz = 0 (3)

∂φ(r, θ, z)

∂z
= i�w(r, θ) on z = d, r ≤ R (4)

wherew(r, θ) is the vertical complex displacement of the plate,
andg the gravitational acceleration.

The radiation condition for the scattering and radiation
potential is also applied at infinity.

lim
r→∞

√
r

[
∂(φ − φI )

∂r
+ ik(φ − φI )

]
= 0 asr → ∞ (5)

wherer is the radial coordinate measured from the centre of
the circular VLFS,k the wave number, andφI the potential
representing the undisturbed incident wave:

φI = ig A coshkz

� coshkd
eikx

= ig AM1/2
0

� coshkd
f0(z)

∞∑
n=0

εn in Jn(kr) cosnθ (6)

whereε0 = 1, εn = 2 (n ≥ 2); A is the amplitude of the
incident wave;Jn is the Bessel function of the first kind of order
n; and

k tanhkd = � 2

g
(7)

f0(z) = M−1/2
0 coshkz (8)
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