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Lateral buckling of overhanging crane trolley monorails
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Abstract

Lateral torsional buckling should be taken into account during the design of overhanging steel beams. One special type of overhanging beam
is the crane trolley monorail. Lateral buckling of overhanging monorails under idealized loading and boundary conditions has been studied in the
past using classical mathematical procedures. This paper aims to present a detailed investigation of overhanging monorails using finite element
analysis. Effects of different loading and boundary conditions were studied in detail. It was foundout that the location of loading and supports on
the cross section have significant effects on the buckling capacity. Beams having different warping and torsional properties were analyzed. The
effects of cross section distortion on buckling capacity were investigated for beams with single and double overhangs. The reduction in capacity
due to cross section distortion has been quantified. Based on the analysis results, simple design recommendations were developed for lateral
buckling of overhanging monorails, and they are presented herein.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and background

Beams are essential components of steel construction. A
satisfactory design should ensure that the beam is stable and
has enough strength and stiffness against the applied loads. For
steel beams having an I-shaped cross section, global buckling
and local buckling are typical modes of instability. Global
instability is in the form of lateral torsional buckling of the
beam as a whole, while local instability could be in the form
of web or flange buckling. Design codes present capacity
equations for lateral torsional buckling of I-shaped members
[1,2]. Local buckling is usually precluded by limiting the
width–thickness ratio of the compression elements (web and
flange).

Lateral torsional buckling of I-beams is a complex
phenomenon. If a simply supported beam is subjected to equal
and opposite end moments, the compression flange of the
beam can move sideways when a certain value of applied
moment is reached. In this undesirable behavior, the tension
flange tries to restrain theflange in compression and the
resulting buckling mode is lateral-torsional, indicating a lateral
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displacement together with a rotation of the cross section. A
closed form solution of thecritical buckling moment(Mo) has
been developed [3] and was adopted by many design codes
[1,2] in dif ferent forms:
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whereL is the unbraced length,E is the modulus of elasticity,
I y is the minor axis moment of inertia,G is the shear modulus,
J is the torsional constant, andCw is the warpingconstant.

In the derivation of Eq. (1) it is assumed that the cross
section is prevented from lateral movement and twist at the
ends of the beam. Due to the complexity of the problem, it is
difficult to come up with closedform solutionsfor cases with
different loading and boundaryconditions. Only a few closed
form solutions exist for the lateral torsional buckling problem
and mostly numerical methods are used for the solution of such
problems.

Features such as inelasticity and initial imperfections are
not included in a classical bifurcation analysis. However,
design codes recognize these features by converting the
expressions derived on the basis of bifurcation analysis to
design expressions. This then permits the use of correction
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Fig. 1. A generic view of single and double overhanging beams.

factors obtained for elastic critical loads for making similar
allowances to the design values.

For moment variations along the beam due to different
loading conditions, Eq. (1) needs to be modified to obtain
the critical moment(Mcr). This is usually accomplished by
multiplying the critical moment obtained from Eq.(1) by a
moment gradient factor,Cb:

Mcr = CbM0. (2)

Cb is a modification factor for non-uniform bending moment
variation along the laterally unsupported beam segment and
depends on the shape of the moment diagram between lateral
braces.Cb is dimensionless and varies between 1.0 and about
2.3 for simply supported and continuous beams. Moment
gradient factors have been developed in the past and the most
widely used ones can be found in the design codes [1,2].

Apart from simply supported and continuous beams,
buckling of cantilevers has been studied in the past [3]. Due to
the differences in boundary conditions, cantilevers are treated
differently to simply supported beams. In addition, overhanging
beams that possess the characteristics of both cantilever and
simply supported beams lend themselves to another special
class of problems. In the case of an overhanging beam shown
in Fig. 1, there are either one or two cantilevering segments
connected to a main span.

One special type of overhanging beam is the crane trolley
monorail shown inFig. 2. Overhanging monorails are quite
frequently encountered in industrial structures. The monorail
allows the movement of a crane trolley through the entire span
of the member. As in the general case of the overhanging
beams, monorails can have single or double overhangs. The
design of crane trolley beams against global buckling is
complex due to the nature of loading and boundary conditions.

Although buckling of overhanging beams in general has
received attention in the research literature [4–7], the special
case of crane trolley monorails has only been investigated by
Tanner [8]. In Tanner’s study [8] a generic single overhanging
monorail shown inFig. 2 was considered. As for the loading,
the case where a point load acts at the end of the overhanging
segment was considered. Due to this loading, the entire length
of the bottom flange is in compression. Therefore, the system
can be analyzed as a simple beam with overhang. For a
location to be considered as an LTB brace point, the cross

Fig. 2. A typical single overhanging monorail.

section needs to be braced against twist or lateral displacement
of the compression flange. For the case shown inFig. 2 the
cross section is prevented from twisting at the interior support,
therefore this location can be considered as a brace point. On
the other hand, at the exterior support location, the displacement
of the compression flange and twist are not restrained. In
addition, it is not possible to restrain the end of the overhanging
segment in order to have the lifting point clear of obstructions.
The overhanging monorail is regarded as braced at the interior
support only.

The system shown inFig. 2 was analyzed by Tanner [8]
using the classical mathematical procedures adopted for
buckling of I-shaped beams. The beam was divided into two
segments which comprise the main part and the overhanging
part. For each part, the differential equation that represents the
equilibrium of the segment in the deformed configuration was
written in terms of the torsional rotation. Later, the differential
equations were solved using the Bessel functions and boundary
conditions were applied to reduce the problem to a system of
linear algebraic equations. The critical value of the applied load
was found by setting the determinant of the coefficient matrix
of the system equal to zero.

Two major assumptions were made during the solution of
the problem. First, it was assumed that the transverse loads
are applied through the shear center of the cross section.
Second, the warping stiffness was assumed to be negligible in
comparison with the torsional stiffness. Tanner [8] focused on
the solution fornarrow flanged American standard shapes (S-
shapes) which are commonly used for trolley beams. When the
warping stiffness is neglected in Eq.(2) the critical buckling
moment can be written as:

Mcr = Cbπ

L

√
E IyG J. (3)

By using the mathematical procedure explained above,
Tanner [8] obtained a set ofCb values as a function of the non-
dimensional parameterk, which is defined as the ratio of the
overhanging segment to the total beam length(k = L1/L). The
proposedCb values based on the analyses are given inTable 1.
For simply supported and continuous beams laterally supported
at the ends, it is conservative to assume aCb value equal to
unity for cases with moment gradients. The solutions given by
Tanner [8] showed thatCb values lower than unity should be
expected for overhanging beams when the total length of the
beam(L) is used in Eq.(3).



Download English Version:

https://daneshyari.com/en/article/269232

Download Persian Version:

https://daneshyari.com/article/269232

Daneshyari.com

https://daneshyari.com/en/article/269232
https://daneshyari.com/article/269232
https://daneshyari.com

