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Abstract

In this paper, an exact truncation boundary condition is derived and implemented in a finite element code for the analysis of dam–reservoir
interaction for incompressible, inviscid and unbounded fluid domains. The reservoir domain is divided into two regions in the derivation of the
truncation boundary condition. These are the near field having a complex geometry and the far field with a uniform cross-section. The proposed
boundary condition is obtained using the analytical solution for the far field and used as a truncation boundary condition at the truncation surface
for the near field including the dam–reservoir system. This method has the advantage of geometrical flexibility in the near field and of being a
semi-analytical approach giving close results to the exact solutions for the cases analyzed. In addition, accurate results are also obtained when the
reservoir domain is truncated very close to the dam–reservoir interface.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the finite element analysis of dam–reservoir interaction
problems difficulties arise due to unbounded reservoir domain.
This difficulty is handled by truncating the unbounded fluid
domain at a certain distance away from the dam–reservoir
interface. However, for an accurate analysis, the behavior
of reservoir fluid at the truncation surface must be truly
represented. Therefore, a suitable boundary condition is
required along the truncation boundary.

Zienkiewicz et al. [1] studied the coupled response of
structures submerged in incompressible fluids using the finite
element method. Nath [2] presented a solution to the problem
neglecting radiation damping. Chakrabarti and Chopra [3]
assumed the reservoir was a continuum with infinite length.
Chwang and Housner [4,5] analyzed the added-mass effect of
horizontal acceleration in the dam–reservoir interaction both
analytically and using a momentum balance approach.

Several boundary conditions have been proposed in the past.
The most commonly used truncating boundary condition is the

∗ Tel.: +90 388 2252284; fax: +90 388 2250112.
E-mail address: sbcoskun@nigde.edu.tr.

Sommerfeld radiation condition [6]. This boundary condition
becomes a rigid stationary boundary for incompressible fluid
domains and as a result does not represent the actual behavior of
the reservoir domain. Another boundary condition is proposed
by Sharan [7]. The Sharan boundary condition is obtained
by using the exact solution of the reservoir fluid responses
for a vertical faced rigid dam to represent the fluid behavior
at a sufficiently large distance away from the dam–reservoir
interface. Aviles and Sanchez-Sesma [8] proposed an analytical
solution for dam–reservoir systems with non-vertical interface
by using the Trefftz-Mikhlin method. This method produces an
infinite set of algebraic equations in which the unknowns are the
coefficients of an exact solution. Lately Küçükarslan [9] have
proposed a truncating boundary condition by using the exact
solution for hydrodynamic pressures for dam–reservoir systems
with vertical dam–reservoir interface. This boundary condition
is suitable for the analysis of dam–reservoir systems with dams
having vertical upstream face.

The objective of the present study is to propose an exact
truncation boundary condition for dam–reservoir interaction
problems in unbounded fluid domains. The reservoir fluid
domain is assumed to be incompressible and inviscid. In the
derivation of an exact boundary condition, the reservoir domain
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Fig. 1. Dam-reservoir system.

is divided into two regions. One is far field, which is uniform
for the derivation of the truncation boundary condition and the
other is near field including the dam–reservoir system in any
geometry to be analyzed using the derived boundary condition
from the far field. The main advantage of this approach is to
gain a geometrical flexibility for the dam–reservoir system to be
analyzed in the near field. Another advantage is to have an exact
boundary condition on the truncation boundary, which leads to
a semi-analytical solution. If the reservoir geometry is uniform
in the near field, the presented formulation allows the truncation
boundary to be in close vicinity to the dam.

2. Formulation of the problem

In the analysis of unbounded reservoir fluid domains, the
reservoir is divided into two regions: the near field having a
complex geometry and the far field with a uniform cross-section
as shown in Fig. 1.

Truncation boundary condition is derived from the
governing equation of hydrodynamic pressure in the far field.
Hydrodynamic pressure satisfies the Laplace equation for an
incompressible and inviscid fluid.

∇
2 p = 0. (1)

Boundary conditions at the boundaries of the far field are:
On the truncation surface (B3),

∂p
∂n

(xB3, y) = −
∂p f

∂n
(xB3, y) . (2)

At the bottom of the far field (B5), if only horizontal ground
motion is considered,

∂p f

∂n
(x, y) = 0. (3)

At the far end where the x coordinate is infinite

p f (∞, y) = 0. (4)

At the free surface (B6), if the effect of surface waves is
neglected,

p f (x, H) = 0 (5)

where H is reservoir height in the far field and superscript ‘ f ’
represents the variable in the far field domain.

The analytical solution for hydrodynamic pressure, p f , in
the far field is:

p f (x, y) =

∞∑
k=1

Ake−λk
x
H cos

(
λk

y
H

)
(6)

where λk =
2k−1

2 π .
Pressure along the truncation surface is a function of y only

and may be obtained by taking x = 0.

p f
∣∣∣
x=0

= p f (y) =

∞∑
k=1

Ak cos
(
λk

y
H

)
(7)

where

Ak =
2
H

∫ H

0
p f (y) cos

(
λk

y
H

)
dy. (8)

Once Ak is determined, the normal derivative of hydrody-
namic pressure in the far field along the truncation boundary
can be evaluated from the following equation.

∂p f

∂n
= −

∂p f

∂x
. (9)

At x = 0, the normal derivative of pressure in the far field in
Eq. (9) becomes:

∂p f

∂n

∣∣∣∣
x=0

=

∞∑
k=1

λk

H
Ak cos

(
λk

y
H

)
. (10)

The required truncation boundary condition may be obtained
by inserting Eq. (10) into Eq. (2) for the analysis of the
dam–reservoir interaction considering the dam and near field.
This boundary condition is:

∂p
∂n

∣∣∣∣
B3

=

∞∑
k=1

−
λk

H
Ak cos

(
λk

y
H

)
. (11)

The normal derivative of pressure in Eq. (11) is also equal
to the derivative of pressure with respect to (x). The Ak’s
must be determined to complete the derivation of the boundary
condition. Recall Eq. (8):

Ak =
2
H

∫ H

0
p f (y) cos

(
λk

y
H

)
dy.

The truncation boundary is divided into ‘n’ equal parts as
shown in Fig. 2. If nodal pressures along this boundary are
assumed to change linearly, variation of the pressure along the
i th part at the boundary (B3) may be expressed as follows:

p f
i (y) =

(
i −

y
1y

)
p f

i−1 +

(
y

1y
− (i − 1)

)
p f

i

i = 1, 2, . . . , n. (12)

Eq. (8) may be rearranged by calculating the integral on the
boundary (B3) as the summation of integrals in each divided
part of this boundary.

Ak =
2
H

n∑
i=1

∫ yi

yi−1

p f
i (y) cos

(
λk

y
H

)
dy. (13)

Substituting Eq. (12) into Eq. (13) one has Ak as:
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