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Abstract

In this paper is studied the ultimate failure (limit) load of stone arch bridges. The proposed model is based on finite element analysis with
interfaces, simulating potential cracks, which allow for unilateral contact with friction. Opening or sliding of some interface indicates crack
initiation. The ultimate load has been calculated by using a path-following (load incrementation) technique. Lack of a solution at a certain level
of loading indicates onset of failure. For the validation of the proposed method, which is based on the contact model, the ultimate failure load is
recalculated by using a modern implementation of the classical collapse mechanism method based on linear programming. Finally, the beneficial
effect of the fill on the limit load of a real bridge is estimated and compared with experimental results.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Stone arch bridges are part of the cultural heritage of
both Greece and many other countries. Many of them still
survive, therefore a more detailed analysis of these monuments,
including restoration, is of interest. The properties of the
material and of the structure make this effort quite demanding.
A stone bridge consists of stone blocks and mortar joints.
Blocks have high strength in compression and low strength in
tension while mortar has generally low strength. Thus a safe
assumption of a no-tension material can be adopted at least for
the purpose of limit analysis. Stone blocks and mortar have also
different Young’s moduli. In some cases the mortar does not
exist (dry masonry). The mentioned variation in the mechanical
properties of the bridge’s materials leads to the development
of a number of theories in order to represent as accurately as
possible, the real mechanical behavior of the stone bridge.
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Two widespread methods for the assessment of masonry
arch bridges have been used in the past. The first, known as
the Military Engineering Experimental Establishment (MEXE)
method, is a semi-empirical one [1] and will not be considered
further here, while the second is the collapse mechanism
method proposed by Heyman [2,3], and its extensions. The
limit analysis of block structures with a frictional contact
interface law offers an interesting aspect in the study of
masonry bridges. Several computational methods have been
developed for the evaluation of the limit load of masonry
structures. Drucker [4] first underlined the problem of applying
the bound theorems of plasticity to frictional problems.
Livesley [5] attempted to solve the problem of the collapse
load evaluation of structures formed with frictional materials,
as a linear programming problem. In Ref. [5] it has been
demonstrated that the adoption of a simplified associated
constitutive law may yield an overestimate of the true
collapse load. Melbourne and Gilbert [6,7] confirmed that
frictional assumptions are very important in multiring arches.
Fishwick [8] developed automatic numerical schemes for the
limit analysis of rigid block structures involving friction,
while Baggio and Trovalusci [9] proposed mathematical
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programming approaches for carrying out the same task. Ferris
and Tin-Loi [10] computed the collapse load of discrete rigid
block systems with frictional contact interfaces as a special
constrained optimization problem (the so-called mathematical
problem under equilibrium constraints, MPEC). Fishwick et al.
[11] formulated the limit analysis problem as an optimization
problem and suggested a solution which involves the use of
a genetic algorithm. Modern methods based on finite element
analysis have also been developed for the study of masonry
structures [12]. The models which have been developed in the
past can be roughly divided into two large categories:

(1) Discrete models
The structure is divided into large discrete parts such

as stone arch parts. The behavior of the contact surface
between them is described by a unilateral law, possibly with
friction, while the discrete elements are assumed to behave
elastically. In the limit the parts are simply considered to be
rigid bodies.

(2) Continuum models
The mechanical behavior of these models is described

by a nonlinear constitutive law, where either:
(a) the masonry is assumed to consist of a single material

and its behavior is described by an inelastic theory (for
instance an appropriately modified elastic-plastic model
with fracture) [13], or:

(b) the different mechanical behavior between stone and
mortar and the anisotropy induced by them are
taken into account on the basis of a homogenization
theory [14].

In the present work the ultimate failure load of a stone arch
bridge is found by the use of a discrete model formulation.
In particular, the geometry of the structure is divided into a
number of interfaces, perpendicular to the center line of the
ring. Those interfaces are uniformly distributed in the arch.
A parametric investigation concerning the interaction between
their number and the ultimate load takes place; finally a large
number of them is considered (see Section 5). Unilateral contact
law governs the behavior in the normal direction of an interface,
indicating that no tension forces can be transmitted in this
direction. The behavior in the tangential direction takes into
account that sliding may or may not occur. For the validation
of the obtained results, the ultimate failure load is recalculated
using a modern implementation of the traditional method of
collapse mechanism, which is based on linear programming [6,
7]. A second, more complicated analysis in which the backfill
is included is also presented. This solution is then compared
with experimental data taken from the published literature. It
should be mentioned that the method proposed here can be used
for the limit load analysis of every multi-body structure in civil
engineering (e.g. dry masonry walls, cracked rocks etc.) and
beyond (e.g. gripper analysis in robotics).

2. The unilateral contact-friction model

2.1. The unilateral contact

Let us consider a point lying on the boundary of an elastic
body which comes in contact with a rigid wall. Let u be the

single degree of freedom of the system, g be the initial opening
and tn be the corresponding contact pressure in case contact
occurs. The basic unilateral contact law is described by the
set of inequalities (1), (2) and by the complementarity relation
(3), [15–17]

h = u − g ≤ 0 H⇒ h ≤ 0 (1)

−tn
≥ 0 (2)

tn(u − g) = 0. (3)

Inequality (1) represents the non-penetration relation, while
relation (2) implements the requirement that only compressive
stresses (contact pressures) are allowed. Eq. (3) is the
complementarity relation which states that either separation
with zero contact stress occurs or contact is realized with
possibly non-zero contact stress. For a discretized structure the
previous relations are written for every point of a unilateral
boundary or interface by using appropriate vectors, as will be
mentioned later in this paper.

2.2. Frictional modelling

The behavior in the tangential direction is defined by a static
version of the Coulomb friction model. Two contacting surfaces
start sliding when the shear stress in the interface reaches a
critical value equal to:

t t
= τcr = ±µ|tn

| (4)

where t t , tn are the shear stress and the contact pressure at a
given point of the contacting surfaces respectively and µ is the
friction coefficient. There are two possible directions of sliding
along an interface, so t t can be positive or negative depending
on that direction. Furthermore, there is no sliding if |t t

| < µ|tn
|

(stick conditions). The sliding rule can be summarized by the
following relations

|t t
| < µ|tn

| −→ ut = 0 (no sliding) (5a)

t t
= µ|tn

| −→ ut ≥ 0 (sliding in one direction) (5b)

t t
= −µ|tn

| −→ ut ≤ 0 (sliding in the opposite direction) (5c)

where ut is the displacement (sliding) in the tangential
direction of an interface. In order to express the frictional rules
with complementarity relations, slack variables are introduced
(Fig. 1) and the problem is written as follows

t t
+ r1 = µ|tn

| (6a)

t t
− r2 = −µ|tn

| (6b)

ut = λ1 − λ2 (6c)

r1λ1 = 0, r2λ2 = 0 (6d)

r1, r2, λ1, λ2 ≥ 0. (6e)

Eq. (6d) are the complementarity relations, which in this case
express that either sliding or sticking conditions are active.
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