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3D homogenized limit analysis of masonry buildings under horizontal loads
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Abstract

The current confidence levels in the ability to provide buildings with adequate resistance to horizontal actions do not easily apply to historic
and existing masonry structures. Limit analysis is often not sufficient for a full structural analysis under seismic loads, but it can be profitably used
in order to obtain a simple and fast estimation of collapse loads. Often, the limit analysis of ancient masonry structures is used in the context of
several simplifications, the assumptions about the collapse mechanisms being the most relevant. Aiming at a more general framework, a micro-
mechanical model developed previously by the authors for the limit analysis of isolated in- and out-of-plane loaded masonry walls is extended
here and utilized in the presence of coupled membrane and flexural effects. In the model, the elementary cell is subdivided along its thickness
in several layers, where fully equilibrated stress fields adopting a polynomial expansion are assumed. The continuity of the stress vector on the
interfaces between adjacent sub-domains and anti-periodicity conditions on the boundary surface are further imposed. Linearized homogenized
surfaces for masonry in six dimensions are obtained and implemented in a FE limit analysis code, and two 3D case studies are analyzed making
use of the kinematic theorem of limit analysis. From the results, the approach proposed is validated and its usefulness for solving engineering
problems is demonstrated.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been shown that the high vulnerability of historical
masonry buildings to horizontal actions is mostly due to the
absence of adequate connections between the various parts,
especially when wooden beams are present both in the floors
and in the roof [1]. This characteristic leads to overturning
collapses of the perimeter walls under seismic horizontal
acceleration and combined in- and out-of-plane failures. The
evaluation of the ultimate load bearing capacity of masonry
buildings subjected to horizontal loads is a fundamental task
in their design and safety assessment. Simplified limit analysis
methods are usually adopted by practitioners for safety analyses
and design of strengthening [2]. However, codes of practice,
such as for instance the recent Italian O.P.C.M. 3431 [3,
4], require a static nonlinear analysis for existing masonry
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buildings, in which a limited ductile behavior of the elements
is taken into account, featuring failure mechanisms such as
rocking, shear and diagonal cracking of the walls. Nowadays,
several models for the analysis of masonry buildings are at
our disposal, but the approach based on the use of averaged
constitutive equations seems to be the only one suitable
for employment in a large scale finite element analysis [5].
Heterogeneous approaches based on a distinct representation
of bricks and joints seem to be limited to the study of panels
of small dimensions, due to the large number of variables
involved in a nonlinear finite element analysis. Therefore,
alternative strategies based on macro-modeling have been
recently developed in order to tackle engineering problems (see
Lourenço et al. [6]). Obviously, macro-approaches require a
preliminary mechanical characterization of the model, which
has to be derived from experimental data from laboratory or in
situ testing [7].

In this framework, homogenization techniques can be used
for the analysis of large scale structures. Such techniques
take into account at a cell level the mechanical properties of
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constituent materials and the geometry of the elementary cell,
allowing the analysis of entire buildings through standard finite
element codes. Furthermore, the application of homogenization
theory to the rigid-plastic case [8] requires only a reduced
number of material parameters and provides significant
information at failure, such as limit multipliers, collapse
mechanisms, and at least on critical sections, the stress
distribution [9].

In this paper, the micro-mechanical model presented by the
authors in [9,10] and [11] for the limit analysis of in- and
out-of-plane loaded masonry walls respectively, is extended
and utilized in the presence of coupled membrane and flexural
effects. In the model, the elementary cell is subdivided along its
thickness into several layers. For each layer, fully equilibrated
stress fields are assumed, adopting polynomial expressions for
the stress tensor components in a finite number of sub-domains.
The continuity of the stress vector on the interfaces between
adjacent sub-domains and suitable anti-periodicity conditions
on the boundary surface are further imposed. In this way,
linearized homogenized surfaces in six dimensions (polytopes)
for in- and out-of-plane loaded masonry are obtained. Such
surfaces are then implemented in a FE limit analysis code for
the analysis at collapse of entire 3D structures, and meaningful
examples of technical relevance are discussed in detail.

In Section 2, the micro-mechanical model adopted for
obtaining masonry homogenized polytopes is recalled, whereas
in Section 3 the FE upper bound approach is presented. The
method is based on a triangular discretization of the structure,
so that the velocity field interpolation is linear inside each
element. Plastic dissipation can occur for in-plane actions both
in the continuum and in the interfaces. On the other hand,
since the velocities interpolation is assumed linear inside each
element, the curvature rate tensor is equal to zero for each
triangle, and out-of-plane dissipation can take place only at the
interfaces between adjoining triangles.

Two meaningful structural examples are treated in detail in
Section 4. The first numerical simulation refers to the prediction
of the ultimate seismic load of a two story masonry building of
dimensions 7.32 × 7.32 × 7.14 m (length × width × height).
The building was experimentally tested by Yi et al. [12] under
cyclic loads in the inelastic range at Georgia Tech, USA. The
second example consists of an ancient house already studied by
De Benedictis et al. in [13] within an extensive survey project
coordinated by Giuffrè [2] of the entire Ortigia (Italy) city
center.

The reliability of the proposed model is assessed through
previously presented numerical results [14], and through
comparisons with results obtained by means of standard
nonlinear FE approaches.

2. In- and out-of-plane homogenized failure surfaces

A masonry wall Ω constituted by a periodic arrangement
of bricks and mortar disposed in running bond texture is
considered, as shown in Fig. 1a. As pointed out by Suquet
in [8] from a general point of view, homogenization techniques
combined with limit analysis can be applied for the evaluation

of the homogenized in- and out-of-plane strength domains Shom

of the masonry. Under the assumptions of perfect plasticity and
its associated flow rule for the constituent materials, and in the
framework of the lower bound limit analysis theorem, Shom can
be derived by means of the following (nonlinear) optimization
problem (see also Fig. 1):

Shom

=
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(1)

where:

– N and M are the macroscopic in-plane (membrane forces)
and out-of-plane (bending moments and torsion) tensors;

– σ denotes the microscopic stress tensor;
– n is the outward versor of ∂Yl surface, Fig. 1a;
– ∂Yl is defined in Fig. 1a;
– [[σ ]] is the jump of micro-stresses across any discontinuity

surface of normal nint, Fig. 1c;
– Sm and Sb denote respectively the strength domains of

mortar and bricks;
– Y is the cross-section of the 3D elementary cell with y3 = 0

(see Fig. 1) |Y | is its area, V is the elementary cell volume,
h represents the wall thickness, and y =

(
y1 y2 y3

)
are

the assumed material axes;
– condition (1(c)) imposes a micro-equilibrium with zero

body forces, usually neglected in the framework of the
homogenization theory;

– anti-periodicity condition (1(e)) requires that the stress
vectors σn are opposite on opposite sides of ∂Yl , Fig. 1c,
i.e. σ (m)n1 = −σ (n)n2;

– Y m and Y b represent mortar joints and bricks respectively,
see Fig. 1.

In order to solve Eq. (1) numerically, the simple admissible
and equilibrated micro-mechanical model proposed in [10] is
adopted. The unit cell is subdivided into a fixed number of
layers along its thickness, as shown in Fig. 1b. For each layer,
out-of-plane components σi3 (i = 1, 2, 3) of the micro-stress
tensor σ are set to zero, so that only in-plane components
σi j (i, j = 1, 2) are considered active. Furthermore, σi j (i, j =

1, 2) are kept constant along the ∆L thickness of each layer,
i.e. in each layer σi j = σi j (y1, y2). For each layer, one-
fourth of the representative volume element is sub-divided into
nine geometrical elementary entities (sub-domains), so that
the entire elementary cell is sub-divided into 36 sub-domains
(see [10] for further details and Fig. 1b).

For each sub-domain (k) and layer (L), polynomial
distributions of degree (m) in the variables (y1, y2) are a
priori assumed for the stress components. Since the stresses
are polynomial expressions, the generic i j th component can be
written as follows:

σ
(k,L)
i j = X(y)S(k,L)T

i j y ∈ Y (k,L) (2)
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