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Flexural behaviour of externally prestressed beams. Part I: Analytical model
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Abstract

Two features that distinguish an externally prestressed beam from an otherwise internally bonded, prestressed beam are: (i) the tendon stress
depends on the overall deformation of the beam; and (ii) the tendons are free to move relative to the section depth, resulting in eccentricity
variations defined as second-order effects. This paper presents a simple “pseudo-section analysis” method which accounts for second-order effects
in simply supported, externally prestressed beams subjected to two symmetrically applied concentrated loads. The proposed method predicts the
load–deflection curve and provides explicit expressions for the tendon stress, which can be used to evaluate the moment capacity of the beam by
section analysis based on the bond reduction coefficient in strain compatibility.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

External prestressing refers to a post-tensioning method in
which the tendons are placed on the outside of a structural
element to facilitate flexural resistance. It may be efficiently
utilized in the construction of segmental box-girder bridges as
well as in the strengthening of existing concrete beams [1,2].
However, there has been relatively little documentation on the
analysis and design of externally prestressed structures [3].

One of the reasons which leads to the complexity in the
analysis of externally prestressed beams can be attributed to
the eccentricity variations of external tendons under load,
commonly referred to as second-order effects. That is, under
the application of external loads, a concrete beam deforms with
a nonlinear profile while the external tendons remain rectilinear
in between anchorages and/or deviators, as shown inFig. 1(a).
This results in a relative movement of the external tendons with
respect to the centroid of the concrete section in between the
anchorages and/or deviators, as a result of which the flexural
capacity of the beam is reduced [4–9].

Fig. 1(b) shows two schematic load–deflection curves of
an externally prestressed beam. The solid line represents the
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load–deflection curve of the beam where second-order effects
are neglected. If second-order effects are taken into account,
the stiffness of the beam is reduced and the ultimate strength is
relatively lower as shown by the dashed line. Mutsuyoshi et al.
[7] tested a series of externally prestressed beams with a span-
to-depth ratio of about 21 and reported that the reduction in
beam strength due to second-order effects can be as high as
16%. In another theoretical study by Alkhairi and Naaman [5],
the eccentricity variation was reported to be more significant
in beams with span-to-depth ratios greater than 24 and strength
reduction as high as 25% can be observed for beams with a
span-to-depth ratio of 45.

Several investigators [5–8,10] have attempted to consider
the variation of eccentricity in their models for the analysis
of externally prestressed beams. Typically, the effective tendon
eccentricity at any location was related to the deflections
of the adjacent deviators. By dividing the beams into finite
sections and considering compatibility of member deformation
and equilibrium of forces and moments, the total elongation
of the external tendons for an applied load can be taken as
the integral of the concrete strains at the level of the tendon.
Of the available models, Alkhairi and Naaman’s model [5]
distinguishes itself from the others in that it considers an
additional moment induced by shear. On the other hand,
Mutsuyoshi et al. [7] have developed prediction equations based
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Notation

Aps area of prestressing or external tendons
As area of internal tension reinforcement
A′

s area of internal compression reinforcement
Atr transformed area of beam cross section
b beam width
bw beam web width
c neutral axis depth
dps tendon depth
dps0 initial tendon depth
dps,u tendon depth at ultimate limit state
ds effective depth of internal tension reinforcement
d′

s effective depth of internal compression reinforce-
ment

e tendon eccentricity
e0(x) function defining the eccentricity along the span
em initial tendon eccentricity at midspan
es tendon eccentricity at support
eu tendon eccentricity at ultimate limit state
Ec modulus of elasticity of concrete
Eps modulus of elasticity of prestressing or external

tendons
f ′
c concrete cylinder compressive strength

fcu concrete cube compressive strength
fpe effective prestress of prestressing or external

tendons
fps ultimate tendon stress of prestressing or external

tendons
f py yield strength of prestressing or external tendons
fr modulus of rupture of concrete
fy yield strength of internal tension reinforcement
f ′
y yield strength of internal compression reinforce-

ment
h overall beam height
h f flange thickness of beam
I moment of inertia of the beam cross section
Icr moment of inertia for cracked cross section taken

about the neutral axis
Ie effective moment of inertia
Itr moment of inertia for transformed cross section

taken about the neutral axis
ks constant for consideration of second-order effects
L effective beam span
Ld distance from beam support to deviation point
Lq distance between two symmetrically applied

concentrated loads
Ls distance from beam support to loading point
m bending-moment equation due to a unit load at

the section under consideration
mdev moment due to one unit load at the deviation point
mmid moment due to one unit load at midspan
M applied moment or moment within the constant

moment region
Mcr cracking moment
(Mcr)e cracking moment due to initial effective prestress

Mdec decompression moment
Mecl moment corresponding to elastic cracked limit
Mg moment due to self-weight
Mps bending-moment equation due to the prestressing

force along the span
M(x) bending-moment equation along the span
Mu ultimate moment of resistance
My moment corresponding to yield load
Sd distance between two symmetrically placed

deviators
Zb elastic modulus of the critical section based on

the extreme concrete fibre subjected to tensile
stress

β1 compression stress block depth factor
δ
(−)
dev camber at deviation point due to prestressing

force
δ
(+)
dev deflection at deviation point due to applied load

δmid midspan deflection
δ
(−)
mid midspan camber due to the prestressing force

δ
(+)
mid midspan deflection due to applied load

∆ relative upward displacement
�Mcr cracking moment due to stress increase in

external tendons
�εps strain increase in external tendons
εc strain in the top concrete fibre
εce pre-compression strain in the prestressing or

external tendons
εcu strain in the top concrete fibre at ultimate limit

state
φu curvature at ultimate limit state
Ω bond reduction coefficient for the linear elastic

uncracked regime
Ωc bond reduction coefficient for the cracked

regime
Ωu bond reduction coefficient at ultimate limit state

on numerical experiments which may be used to evaluate the
tendon stress and effective tendon eccentricity at the ultimate
flexural strength limit state.

The “member analysis” approach is rather tedious and it may
be simplified by a “pseudo-section analysis”, the development
of which is the subject of this paper. The approach proposed
herein accounts for second-order effects and predicts the
complete response of a simply supported beam subjected to
two symmetrical concentrated loads, with up to two deviators
placed symmetrically about the midspan of the beam.

The proposed analytical method in this paper is developed
for monolithic beams only. However, in an experimental study
carried out by Aparicio et al. [11] with five monolithic and
three segmental beams tested in either flexure or combined
flexure and shear, it was found that the behaviour of a segmental
closed-joint beam is similar to a monolithic beam. Aravinthan
et al. [12] had also investigated monolithic and segmental
beams with highly eccentric external tendons. It was also found
that the flexural behaviour of a monolithic beam is similar
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