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a b s t r a c t

We propose a strategy to guarantee realizability of species mass fractions in explicit time integration of
the partial differential equations governing fire dynamics, which is a multi-component transport pro-
blem (realizability requires all mass fractions that are greater than or equal to zero and that the sum
equals unity). For a mixture of n species, the conventional strategy is to solve for n 1− species mass
fractions and to obtain the nth (or “background”) species mass fraction from one minus the sum of the
others. The numerical difficulties inherent in the background species approach are discussed and the
potential for realizability violations is illustrated. The new strategy solves all n species transport equa-
tions and obtains density from the sum of the species mass densities. To guarantee realizability the
species mass densities must remain positive (semidefinite). A scalar boundedness correction is proposed
that is based on a minimal diffusion operator. The overall scheme is implemented in a publicly available
large-eddy simulation code called the Fire Dynamics Simulator. A set of test cases is presented to verify
that the new strategy enforces realizability, does not generate spurious mass, and maintains second-
order accuracy for transport.

Published by Elsevier Ltd.

1. Introduction

This paper deals with a potential flaw in the thermochemical
state which feeds the combustion model in the Fire Dynamics
Simulator (FDS) for versions prior to and including FDS 6.1.2. It was
recently observed that the chemical species mass fractions may
sum to be greater than unity [16], a clear violation of realizability.
While the impact of this error is deemed to be minor, it is prudent
to correct the flaw. In this work, we describe the root causes of the
problem and a new solution method, which is implemented in FDS
6.2.0.

A numerical solution is realizable if it can physically exist. For
example, positive mass densities are realizable, negative mass
densities are not. Species mass fractions also have realizability
constraints: mass fractions for a mixture of n species must all be
greater than or equal to zero and sum to unity. Stated mathema-
tically, the mass fractions obey Y 0≥α for all α and Y 1∑ =α α . In this
paper, we discuss a method to enforce this constraint for an ex-
plicit update of the species transport equations for a multi-com-
ponent mixture. The scheme is implemented in a publicly avail-
able large-eddy simulation (LES) code called the Fire Dynamics
Simulator (FDS) [1,9].

FDS is a fully explicit finite-volume code used to model low-
speed flows, with an emphasis on smoke and heat transport from
fires. FDS employs block structured Cartesian cells on a staggered
grid [4]. Details of the solver, including a complete description of
the system of equations governing low-Mach turbulent reacting
flows, may be found in [9]. The reader should bear in mind that it
is very difficult to estimate time step constraints for our system of
equations that are not overly conservative. FDS evaluates stability
criteria and makes time step adjustments after an explicit pre-
dictor step, which is the first stage in a second-order Runge–Kutta
scheme. If the time step requires adjustment (based on the pre-
dicted velocity fields), the predictor stage is repeated. Within the
“adjust-time-step loop”, it is critical that FDS exits the mass
transport predictor stage with a realizable mass density field re-
gardless of the chosen time step. Otherwise, the subsequent cal-
culation of the velocity field may result in a run-time error (in
other words, the code crashes, often due to unallowable values in a
thermochemistry lookup table). Hence, decreasing our time step a
priori (the usual approach to addressing such problems with ex-
plicit methods) is not a viable solution to the problems we will
discuss here.

We are concerned with the explicit time integration of the
species transport equation and the resulting numerical effects on
the species mass fraction field. The species transport equation is
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(summation over repeated suffixes is implied)
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where ρ is the mass density, ui is the velocity component in di-
rection i, and the diffusive fluxes and chemical source term, re-
spectively, obey the constraints J 0i,∑ =α α and m 0∑ ̇ ‴ =α α . Sum-
mation of (1) from α¼1 to n yields the continuity equation,
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Clearly, between (1) and (2), only n of the n 1+ equations are
independent.

It is important to appreciate that the transported mass per unit
volume of species α in (1) is given by the quantity Yρ( )α. Nu-
merically, we should distinguish between this and the product

Yρ( )( )α . To avoid confusion, in this paper whenever we write Yρ( )α
we mean the transported dependent variable in (1). We will use

Yρ( )( )α to indicate the product of the density and the mass fraction
of α. Of course, our goal is to make these consistent. Below we will
discuss the numerical challenges this presents.

The species transport equation (1) may be cast as an ordinary
difference equation [7] of the form t fd /dϕ = ϕ. Our goal is to update

the unknownϕ from tk to t t tk k1 = + Δ+ . By definition, in an explicit
scheme, all terms in fϕ are evaluated at time tk or earlier. For ex-
ample, an explicit Euler update is given by

t f . 3
k k k1ϕ ϕ= + Δ ( )ϕ

+

The second-order time marching scheme used in FDS is known as
a strong-stability-preserving (SSP) Runge–Kutta (RK) method [3].
SSP methods inherit the total variation diminishing (TVD) prop-
erties of their individual explicit steps. Hence, within this paper
we may focus on the properties of the Euler update, as in (3).

The right-hand-side of the ordinary difference equation, f k
ϕ,

contains both advective and diffusive transport terms. Chemistry
is time split from transport and does not contribute to any rea-
lizability violation. The diffusive flux terms are modeled using
Fick's law with mixture-averaged diffusivities (this is discussed
further in the next section). In FDS, the advective flux terms are
based on flux limiters, which essentially interpolate the cell-cen-
tered scalar values to the cell faces in such a way as to limit os-
cillations in the scalar solution. FDS employs both Superbee [14]
and CHARM [19] limiters for LES and DNS, respectively. But other
options are available in the literature. For example, the bounded
QUICK or BQUICK scheme of Herrmann et al. [5] enforces global
bounds on the scalar by automatically switching to first-order
upwinding (Godunov) (see, e.g., [18]) if the scalar were to go out of
bounds for the chosen time step (note, however, that BQUICK is
not locally TVD). Regardless of the chosen limiter, for an explicit
update the time step must be small enough to maintain bound-
edness (even Godunov is not unconditionally stable). To ensure a
robust code, the method proposed in this paper is designed to
handle all degenerate cases that we may encounter in practice.

The remainder of this paper is organized as follows. In the next
section, we describe options for solving the system of equations
governing variable-density, low-Mach reacting flows. In Section 3,
we identify the sources of realizability violations in common sol-
ver strategies. To overcome these issues, we adopt the strategy of
solving transport equations for all mixture species. The problem of
scalar boundedness, which is shared by all strategies, is addressed
in Section 4. In Section 5, we present a range of verification cases
to illustrate the improvements in the solver while maintaining
second-order transport accuracy. Finally, conclusions are given in
Section 6.

2. Methods for low-mach reacting flows

If we add temperature to our list of dependent variables and
energy to our list of equations, we can understand the approaches
for solving the system of equations for typical combustion pro-
blems. The methods may be categorized by how they compute
density and how they compute diffusive fluxes. The density is
obtained either from the equation of state (EOS) or from solving
the continuity equation (actually this variant is most common in
compressible Euler schemes). To our knowledge, obtaining the
total mass density by explicit summation of Yρ α, as we propose
below, is a novel approach.

The level of sophistication needed in computing the diffusive
fluxes depends greatly on the application. For large-eddy simula-
tions it is uncommon to employ detailed multi-component
transport (see, e.g., [17]). Instead, it is common to employ mixture-
averaged Fickian diffusion. To guarantee the diffusive fluxes sum to
zero, there are basically two options. The first is to use a “back-
ground” species to absorb the error into a single species con-
centration (see, e.g., [13]). The second is to apply a correction ve-
locity to all species (see, e.g., [12,13]). The background error
method, which we have adopted in FDS, is the simplest and
cheapest computationally and is completely adequate for handling
diffusive transport for practical fire applications.

Below we provide a more detailed account of selected methods
for solving our system of equations in order to provide a basis for
comparison with the proposed new algorithm.

Method 1 (Typical): The most common approach to solving our
system of equations is to obtain the temperature from the energy
equation, the density from the EOS, and to solve only n 1− of the
species equations. The mass fraction of the nth species is obtained
from Y Y1n

n
1
1= − ∑α α=

− . This method is iterative because to obtain
any individual mass fraction requires Y Y /ρ ρ= ( )α α where ρ is from
the EOS. But the EOS requires Yα. Note that the nth species is
usually taken to be the most abundant (prescribed a priori) and is
often referred to as the “background”. For this method, no con-
straint on the diffusive fluxes is enforced, as all errors in diffusive
transport are absorbed by the background species.

Method 2 (current FDS approach): Historically the strategy em-
ployed by FDS has been to solve the continuity equation (2) di-
rectly for ρ and then to solve n 1− of the species equations. In-
dividual mass fractions are obtained from Y Y /ρ ρ= ( )α α , as in
Method 1, but here ρ does not require iteration. Again, the re-
maining species mass fraction is obtained from Y Y1n

n
1
1= − ∑α α=

− .
The temperature is then obtained from the EOS. The energy
equation is still used to form a flow divergence constraint that
tightly couples mass, momentum, and energy [8]. It should be
noted that both the EOS and transport equation for density are
consistent by construction. As we will see, the strategy used in
Methods 1 and 2 to obtain Yn is dangerous in terms of realizability.
These approaches may also generate spurious mass.

Method 3 (present proposal): If Yρ( )α obeys boundedness,
Y 0ρ( ) ≥α , and we solve n species equations obtaining the density

via Yn
1ρ ρ= ∑ ( )α α= , then mass fractions obtained by Y Y /ρ ρ= ( )α α are

guaranteed to be realizable (for 0ρ > ). Thus, we have reduced the
realizability problem to the “easier” problem of boundedness for

Yρ( )α (of course, the other two methods must also address
boundedness for an explicit scheme). Details of the scalar
boundedness correction are discussed in Section 4.

With this approach we must take care to ensure J 0i,∑ =α α . Our
strategy is to absorb any errors in diffusive transport into the most
abundant species locally. That is, for a given cell face we set
J Jm i m i, , ,= − ∑α α α≠ , where m is the most abundant species ad-
jacent to that face. (In practice, because of the way fluxes and cell-
centered scalars are stored in FDS, it is most convenient to look at
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