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Two general approaches may be followed for the development of a fire risk model: statistical models
based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough
for engineering decision-making. Engineering models, on the other hand, require many assumptions that
may result in a biased risk assessment. In two related papers we show how engineering and data-driven
modelling can be combined by developing generic risk models that are calibrated to statistical data on
observed fire events. The focus of the present paper is on the calibration procedure. A framework is
developed that is able to deal with data collection in non-homogeneous portfolios of buildings. Also
incomplete data sets containing only little information on each fire event can be used for model cali-
bration. To illustrate the capabilities of the proposed framework, it is applied to the calibration of a
generic fire risk model for single family houses to Swiss insurance data. The example demonstrates that
the bias in the risk estimation can be strongly reduced by model calibration.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Decisions regarding investments into fire safety generally have
to be made under uncertainty. This stems both from the inherent
randomness of building fire events and from the fact that we are
not able to fully understand and model the underlying phenom-
ena. Probabilistic approaches for fire risk assessment allow the
consistent consideration of both types of uncertainties. The overall
goal of quantitative fire risk assessment is to support decisions on
risk reduction measures by estimating their impact on the ex-
pected consequences (e.g. financial losses or human fatalities) of
all possible fire scenarios. A basic requirement for a risk model to
be used for decision-making is that the risk has to be assessed as a
function of the safety measures installed; the model has to include
the decision variables. Another important requirement is that the
risk-relevant characteristics of the building or group of buildings
to be modelled are accounted for. Finally, the model should assess
the risk as accurately as possible.
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1.1. Engineering and data-based fire risk assessment

Fire risk models can be based on two sources of information:
statistical data and engineering models. Empirical models as de-
scribed e.g. by Ramachandran [1] or Tillander [2] use simple
parametric functions to model fire occurrence and the probability
distribution of financial or human consequences given a fire event.
The models are fitted to observed data and therefore may be ex-
pected to provide a fairly unbiased estimate of the observed fire
risk. However, the approach can only provide average risk esti-
mates, as the data must be collected for a more or less homo-
geneous group of buildings to obtain a sample size that is large
enough for statistical analysis. Another drawback is that the use of
data-based risk models for decision-making will always be re-
stricted by the information content of the data available to the
modeller; information on the relevant decision variables is often
missing.

Engineering risk models, on the other hand, are based on an
understanding of the physical processes leading to loss of property
and life. For the purpose of this paper, an engineering model is
defined very broadly as any approach that breaks down the pro-
blem of fire risk assessment into several components which are
addressed by a number of interacting submodels that represent
physical phenomena, such as e.g. fire spread to different rooms,
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Nomenclature

General notation

X, x Random variable, realisation

X, x Vector of RV, realisations

R Data set with observations of X
E[.] Expectation operator

Var[.] Variance operator

Cov[.] Covariance operator

f Probability density function for X
K %) Cumulative distribution function

fuy &y) Conditional distribution of X given Y
Discrete probability density function

PA) Probability of an event A

Variable definitions

X,x, &  Model input risk indicators

Yyy,¥  Model output risk indicators

2 Risk indicators contained in the data set (different
from model input)

0,0 Model calibration parameters

L1 Likelihood function, log-likelihood

0* Maximum Likelihood parameters

Co Covariance matrix for @

H Fisher information matrix

fire brigade response or occupant egress. Introductions to prob-
abilistic fire risk assessment have been provided e.g. by Hasofer
et al. [3], Yung [4], Magnusson et al. [5] or Ramachandran and
Charters [6], to mention just a few. The methods have been ap-
plied for the development of comprehensive risk models with
different focus, e.g. CESARE-RISK [7], FIRECAM [8], CRISP II [9],
CUrisk [10] and B-Risk [11].

By establishing the relationship between fire risk and clearly
defined physical variables or phenomena, engineering models of-
fer a high potential for decision-making, e.g. during the design of
buildings for fire safety. The methods do however always include a
certain bias, i.e. a systematic error due to assumptions made in the
probabilistic modelling, e.g. the probability distribution functions
of basic input variables and simplified methods used to model the
risk.

When comparing different fire safety designs (e.g. for demon-
strating code equivalency, Beck [7] or He and Grubits [12]), fire
safety engineers often use so-called “conservative” assumptions
leading to a presumably safe, but unpredictable bias in the final
outcome of the model. This is already problematic for a relative
risk assessment, as the risk comparison will only be meaningful if
the bias is the same for all options that shall be regarded. A
comparison between the uncertain benefits of a safety measure
and its (usually certain) costs does, however, require an absolute
risk assessment. In this case, the model clearly has to assess the
expected loss of property or life with as little bias as possible.

The bias, or systematic error, of a risk model may be understood
as the difference between the estimated risk measure (e.g. ex-
pected consequences, exceedance probabilities for large losses)
and its true value, which is generally unknown but may be ap-
proximated by statistical analysis if the data sample is large en-
ough. This implies that the bias can be reduced by calibrating a fire
risk model to statistical data.

Model calibration deals with an optimal choice of model para-
meters in order to represent the observations as best as possible.
Ideally, a calibration approach should not only provide a point
estimate for the “best-fit” parameters, but also some information
on the uncertainty of the calibrated parameters. This may be
achieved by using statistical methods such as the method of
Maximum Likelihood (e.g. Rychlik and Rydén [13]) or a Bayesian
approach to parameter estimation (e.g. Gelman et al. [14]).

If the parameters are associated with physical quantities, model
calibration is also known as inverse modelling. It has recently been
applied to estimate the most likely model input of fire models (e.g.
heat release rate or fire growth rate) from measured output
quantities such as e.g. temperature development or heat flux va-
lues. This approach can be applied either after a fire has occurred
(e.g. for fire investigation, Overholt et al. [15]) or for real-time
decision-making during the course of a fire event (Koo et al. [16],

Jahn et al. [17]).

Model calibration with fire loss data collected for a whole
group (or portfolio) of buildings by e.g. fire brigades or insurance
companies so far has been limited to simple statistical models like
the data-based fire risk models mentioned above. Using observed
loss data for the calibration of engineering fire risk models can be
expected to provide valuable input for an improved prediction
before a fire occurs, e.g. for evaluating the effect of different fire
safety measures. The aim of the present paper and a companion
paper by De Sanctis et al. [18] is to show how this may be realized
in practise.

1.2. Outline of the calibration problem

The general idea of the approach followed in the two related
papers is illustrated in Fig. 1. First we develop a risk model esti-
mating the random model output Y (e.g. the financial loss due to a
fire) as a function of some model input X. The model can be ad-
justed to observations of X and Y made in real fire events by fitting
a set of calibration parameters © to statistical data. The develop-
ment of such a fire risk model, i.e. a model that may be calibrated,
is discussed in De Sanctis et al. [18]. The modelling strategy chosen
is based on the principles of generic risk assessment described in
JCSS [19]. The consequences of an exposure event (e.g. fire igni-
tion) are modelled using a hierarchical approach, with a vulner-
ability model estimating the direct effects of the exposure and a
robustness model assessing the indirect consequences, see Fig. 1.
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Fig. 1. Calibration of a generic fire risk model to data.
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