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Simplified, rational, and practical models that account for the effect of elevated temperature on concrete
and steel properties are needed. These models will enable engineers to design and assess reinforced
concrete (RC) structures to satisfy specific fire performance criteria. This paper introduces a simple
method that predicts the flexural and axial behaviour of RC sections during exposure to elevated
temperatures. The method is based on using finite difference analysis to estimate the temperature
distribution within a concrete section and a modified version of the well-known sectional analysis
approach to predict the axial and/or flexural behaviour. A rational approach is proposed to convert the
two-dimensional temperature distribution to a one-dimensional distribution. This approach converts a
complex problem to a simplified one and thus enables engineers to better understand the behaviour
and have higher confidence in the results. The predictions of the proposed method are validated using
experimental and analytical studies by others. Additional tests are needed to further validate and
improve the proposed method.
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1. Introduction

Fire impacts reinforced concrete (RC) members by raising the
temperature of the concrete mass. This rise in temperature
dramatically reduces the mechanical properties of concrete and
steel [1]. Moreover, fire temperatures induce new strains, thermal,
and transient creep [1]. They might also result in explosive
spalling of surface pieces of concrete members [2].

Concrete structures are currently being designed for
fire using prescribed methods that are based on experimental
tests. These methods specify minimum cross-section dimensions
and minimum clear cover to the reinforcing bars. As new codes
are moving towards performance-based design and conducting
experimental tests to satisfy different fire scenarios would be an
expensive solution, engineers are in need of new design tools to
achieve specific performance criteria for a defined fire scenario.
The finite element method (FEM) has proven to be a powerful
method to predict the behaviour of concrete structures during
exposure to fire events [3,4]. Drawbacks of using the FEM,
including the need to have a coupled thermal-stress analysis
computer program and difficulty of comprehending its results and
identifying potential modeling errors, make it impractical for
design engineers.
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E-mail address: youssef@uwo.ca (M.A. Youssef).

0379-7112/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.firesaf.2009.01.005

In this paper, a methodology that relies on using both
finite difference method (FDM) and a modified sectional
analysis is proposed to estimate the behaviour of concrete
sections during exposure to fire events. FDM is considered a
simple method for evaluating the temperature variation
within a concrete cross-section [5]. Sectional analysis allows
evaluating the axial and/or flexural behaviour of a concrete
section and is based on simple equilibrium and compatibility
equations that can be easily applied by design engineers [6].
The modified sectional analysis is validated by comparing
its predictions with the available experimental and analytical
data.

The research conducted in this paper is limited to unprotected,
siliceous, square concrete sections exposed to a standard ASTM-
E119 fire on their four sides. This case is chosen since it represents
the general case of an interior concrete column in a typical
building. Simple modifications can be introduced to address other
cases and fire scenarios. Normal strength concrete is assumed and
thus spalling is not considered [7].

The column tested by Lie et al. [8] (Fig. 1a) is used in the
following sections to provide example calculations for different
components of the model. The column has dimensions of
305 mm x 305 mm and a height of 3810 mm. It is reinforced with
4-25mm bars and has 10mm ties spaced at 305mm. The
compressive and yield strength of the siliceous concrete and
reinforcing bars are 36.1 and 443.7 MPa, respectively. The column
is subjected to standard ASTM-E119 fire over a height of 3000 mm
while being loaded axially.
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b ‘k 80 x 3.8 mm = 305 mm
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Fig. 1. Heat transfer modeling: (a) RC cross-section, (b) heat transfer mesh, (c) detail A—45° mesh, and (d) detail A—equivalent square mesh.

2. Heat transfer model

Several methods are available to predict the temperature
distribution in a concrete section due to exposure to fire
temperatures. Simplified methods predict the temperature dis-
tribution using pre-assumed temperature variation [9,10]. Such
methods might produce accurate predictions for specific cases but
might also result in significant errors for other cases. The FEM [11]
is considered to be the most accurate tool to predict the thermal
distribution as it accounts for irregular cross-sections subjected to
any pre-specified fire condition. The FDM [5] is a simplified
version of the FEM. It has the advantage of accounting for irregular
shapes with good accuracy in addition to the ease of implementa-
tion in any programming code.

The following sub-sections briefly describe the required
steps to predict the temperature gradient for a square, normal
strength, siliceous concrete cross-section exposed to fire tem-
perature from its four sides. A detailed description of the FDM is
given by Lie [5]. The effect of steel reinforcement on the heat
transfer calculations is neglected because of its small area relative
to concrete area [5].

2.1. Concrete thermal properties

The amount of the heat transferred through the concrete mass
is governed by its thermal conductivity (k;) and specific heat

capacity (C.). For normal strength concrete, models representing
k. and C. are reported by Lie [5].

2.2. Heat transfer mesh

The studied concrete section is divided into a number
of 45° mesh elements as shown in Fig. 1b. The temperature
at the center of each element represents the temperature
of the entire element. The location of any element inside the
mesh can be determined from its coordinates and the mesh width

(A¢) (Fig. 1c).
2.3. Heat transfer calculations

Lie [5] proposed a set of equations that are based on the FDM
to conduct heat transfer calculations. These equations are
implemented into a C# programming code. Fig. 2 shows a
flowchart for the developed program. The boundary conditions
including dimensions, number of exposed faces, and the fire
duration are first identified. The incremental temperature in-
crease at the surface of the column is determined at each time
step based on the relationship between the fire temperature and
its duration. Part of the heat energy conveyed to the boundary
elements is used to increase their temperatures while the
remaining energy is transferred to the inner elements. The effect
of the moisture content is included based on the fact that water
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