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Introduction

In longitudinal studies, researchers measure the
same participants at multiple time points. The data are
tricky because (1) observations from the same individ-
ual are correlated and (2) cross-sectional differences
(or “between-subjects effects”) are intertwined
with longitudinal ones ("within-subjects effects”).
These nuances necessitate the use of careful graphics
and specialized statistical tests. In practice, re-
searchers often fail to graph the data, leading to errors.
They also commonly apply suboptimal tests to the data,
or they waste valuable data by ignoring or combining
time points.

This article reviews methods for visualizing and
analyzing longitudinal data when the outcome is
continuous. | will illustrate the principles with a simple
longitudinal dataset (n = 41) involving 3 groups of
women runners who had their spine bone densities
measured at baseline, 1 year later, and 2 years later;
this example dataset is based on real data [1] but has
been modified for teaching purposes.

First, Graph Your Data

| am wary of any article involving longitudinal data
that doesn’t include a plot of the outcome variable
against time. Formal statistical tests for longitudinal
data are easily misinterpreted, but almost everything
one needs to know is immediately apparent on
the plot. Plots for continuous outcomes can be
divided into 2 main types: those that treat time as
discrete (mean plots), and those that treat time as
continuous.

Mean Plots

Researchers typically measure participants at
discrete time points—for example, at baseline as well
as 1, 3, and 12 months later—and thus one can calculate
the mean value of the outcome variable for each group
at each time point. Plotting these means against time

reveals longitudinal trends. For example, Figure 1 shows
the changes in spine bone mineral density for the
3 groups of women runners; all had menstrual irregu-
larities at baseline. Two groups (black and red lines) had
improvements in menstrual function and corresponding
increases in bone density, whereas one group (blue line)
had no improvement in menstrual function and little
change in bone density. For simplicity, | will refer to the
groups as red, black, and blue for the remainder of the
article.

It is useful to plot both the absolute value of the
outcome (Figure 1, left panel) and the percent change
since baseline (Figure 1, right panel). Absolute value
graphs show between-subjects effects, including base-
line differences between the groups. Percent change
graphs isolate the within-subjects effects so the groups
can be compared independent of any baseline
differences.

Mean plots are simple to create and understand.
They have two potential drawbacks, however. First,
when plotting absolute values, missing data must be
imputed; otherwise, the means may appear to in-
crease or decrease simply because people with low or
high values drop out over time. Second, mean plots are
idealized, because they assume that everyone is
measured at exactly the same time intervals; in re-
ality, the timing of follow-up measurements may be
variable.

Continuous Time Plots

Plots that treat time as continuous reveal more sub-
tleties in the data. For example, Figure 2 shows runners’
percent changes in bone density plotted against their
exact measurement times; smoothing lines have been fit
to each group’s data to highlight the trends. This plot
reveals considerable variability in the timing of runners’
annual visits (runners had to travel to clinical visits,
and some were late in scheduling or attending). The
graph also shows individual-level values; for example,
the maximum increase in bone density for any
runner was 8%.
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Figure 1. Plot of the mean spine bone mineral density (BMD) in g/cm? (left panel) and the mean percent change in bone density since baseline
(right panel) versus follow-up time, by group (red, black, or blue). Error bars represent 1 standard error of the mean. The standard errors are
greatly reduced in the percent change graph (right panel) because this plot removes between-person variability.

Approaches to Analysis

A wide range of methods are used to analyze longi-
tudinal data. | will review 3 common approaches: data
simplification, repeated-measures analysis of variance
(ANOVA), and regression methods. Table 1 summarizes
the results of applying each method to the example
dataset. Note that the regression methods offer a
considerable gain in statistical power (the P values for
the effects are smaller).

In general, regression approaches are optimal; un-
fortunately, they lag behind in popularity. For example,
a 2012 review of longitudinal studies in the anesthesi-
ology literature found that 43% simplified the data,
36% used repeated-measures ANOVA, and only 21% used
a regression approach [2].

Approach 1: Ignore or Collapse Data

Researchers are often more comfortable with statis-
tical tests for cross-sectional data—such as 2-sample
t-tests, ANOVA, and linear regression—than those for
longitudinal data. Thus, they may choose to remove the
repeated-measures aspect of the data by ignoring or
combining time points.

For example, | compared the final bone densities of
the 3 runner groups, adjusting for baseline bone density,
using linear regression (Table 1). This approach may be
appropriate for randomized trials in which one time
point was prespecified as primary, but ignoring time
points has obvious limitations; after all, why did the
researchers bother to collect interim data if they only
intended to throw it out?

An alternative approach is to combine all the
repeated measurements into one summary measure,
such as a slope, average, or area under the curve, and
then to use this single measure in further analyses. For
example, | calculated a linear regression slope for each
woman in my example dataset; the slopes represent

annual rates of change. Figure 3 shows the regression
line for one woman; her slope (rate of change) was
0.009 g/cm? per year. The slopes were higher on
average in the red and black groups than in the blue
group, but these differences did not reach statistical
significance (Table 1). Slope analysis has several merits;
in fact, it has similarities to the regression methods (see
Approach 3 later in this article). However, collapsing
data generally results in a loss of information and
statistical power.

Approach 2: Repeated-Measures ANOVA

Repeated-measures ANOVA is a specialized type
of ANOVA that accounts for the correlation among
repeated observations from the same individual. Despite
its popularity, repeated-measures ANOVA has several
drawbacks: it gives limited information, it can be tricky
to interpret, and it involves restrictive assumptions.
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Figure 2. Plot of the percent change in spine bone mineral density
versus time, where time is treated as a continuous variable (years
since baseline measurement). A smoothing line has been fit to the data
from each group to show the trends. DXA = dual-energy x-ray
absorptiometry.
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