
ELSEVIER

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

A multi-responsive diarylethene system based on the structure transformation by chemical and light stimuli

Weiwei Geng, Chunhong Zheng, Shiqiang Cui, Gang Liu, Shouzhi Pu*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China

ARTICLE INFO

Article history: Received 3 January 2014 Received in revised form 4 March 2014 Accepted 10 March 2014 Available online 21 March 2014

Keywords:
Photochromism
Diarylethene
Schiff base
Deprotonation
Benzoxazole
Multiple response

ABSTRACT

A novel diarylethene with a Schiff base unit was successfully synthesized and its multi-responsive photochromism could be effectively modulated by chemical and light stimuli. By the stimulation of sodium hydroxide, the absorption maximum of its closed-ring isomer showed extraordinarily large redshift of 134 nm, accompanied with a notable color change from purple to green. Subsequent irradiation with 420 nm visible light further caused a dramatic change in its color from green to cyan due to the formation of the benzoxazole moiety. Moreover, the deprotonated open-ring isomer exhibited typical photochromism *via* the diarylethene intermediate with a benzoxazole unit.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Benzoxazoles are an important class of heterocycles in many natural products and pharmaceutical agents, which exhibit a variety of biological activities including antimicrobial and antitumor properties [1–4]. Benzoxazoles are also applied in material science as photochromic agents and laser dyes [5]. Both of the two conventional methods for the construction of benzoxazole ring employ 2-aminophenols as the substrates [6,7]. One approach is the coupling of 2-aminophenols with carboxylic acid derivatives under strong acidic/high temperature conditions [8] or microwave-assisted conditions [9]. The other uses the reaction of 2-aminophenols with an aldehyde *via* the oxidative cyclization of phenolic Schiff base intermediates [10–12]. In these reactions, oxidants are required in stoichiometric or excess amounts relative to their respective substrates. Therefore, development of a more effective route to benzoxazole ring formation is needed.

Recently, 2-haloanilides and benzanilides are frequently used to synthesize 2-arylbenzoxazoles *via* copper-catalyzed intramolecular oxidative cyclization [13–15] due to their commercial availability. Under an oxygen atmosphere in the presence of activated carbon (Darco KB) [16] or HAuCl₄·4H₂O [17], 2-arylbenzoxazoles were synthesized directly without preparing

Schiff bases in advance. A general method for preparation of 2-arylbenzoxazoles from derived phenolic Schiff bases in the conditions of sodium hydroxide (NaOH) and phototrigger in acetonitrile (CH₃CN) was presented. Moreover, the phenolic Schiff base moiety in diarylethene could easily transformed to 2-arylbenzoxazoles in the same conditions [18]. The result provided a useful strategy for constructing a multi-responsive photochromic diarylethene.

Diarylethenes have attracted remarkable research interests by taking advantage of their excellent thermal stability and outstanding fatigue resistance [19,20]. They have potential applications in photonic switch device and optical memory media [21-23]. In previous reports [24-28], the Schiff base moiety in a diarylethene skeleton was found capable of modulating the photochromic properties by base or metal ion stimuli. Tian et al. [24] reported a novel diarylethene with phenolic Schiff base moiety. The diarylethene showed fluorescence enhancement in the presence of Cu²⁺ due to the C=N isomerization [25], which was inhibited through complexation with Cu²⁺. Pu et al. [26] synthesized a diarylethene with a salicylic aldehyde Schiff base unit, which could be used as a multi-addressable fluorescence switch triggered by light, acid and metal ions. Liu et al. [27] revealed that diarylethenes containing Schiff-base mojeties showed polychromic behavior. Chen et al. [28] suggested that the phenolic Schiff base moiety could increase the absorption maximum of the closed-ring isomer. All these results showed that diarylethenes with Schiff base moieties have versatile applications due to their unique physicochemical properties. In this work, a novel asymmetrical diarylethene with phenolic Schiff base

^{*} Corresponding author. Tel.: +86 791 83831996; fax: +86 791 83831996. E-mail address: pushouzhi@tsinghua.org.cn (S. Pu).

Scheme 1. Photochromism of diarylethene **1**.

(10) was synthesized and its multi-responsive behavior was investigated. The absorption maximum of its closed-ring isomer showed extraordinarily large redshift upon deprotonation. The deprotonated closed-ring isomer could be converted to a diarylethene with a benzoxazole moiety upon irradiation with 420 nm light. Moreover, the open-ring isomer of diarylethene with benzoxazole moiety exhibited favorable photochromism upon 297 nm UV photoirradiation. The photochromism of 10 is shown in Scheme 1.

2. Experimental

2.1. General methods

NMR spectra were recorded on a Bruker AV400 (400 MHz) spectrometer using CDCl₃ as solvent and tetramethylsilane (TMS) as an internal standard. Infrared spectra (IR) were recorded on a Bruker Vertex-70 spectrometer, Mass spectra were measured with an Agilent 1100 ion trap MSD spectrometer. UV-visible spectra were recorded on an Agilent 8453 spectrometer. Photo-irradiation was carried out using an SHG-200 UV lamp, a CX-21 ultraviolet fluorescence analysis cabinet, and a BMH-250 visible lamp. Lights of appropriate wavelengths were isolated using different light filters. Fluorescence spectra were measured on a Hitachi F-4600 fluorescence spectrophotometer. Melting points were measured with a WRS-1B melting point apparatus. All solvents used were of spectrograde and were purified by distillation prior to use. All other reagents were obtained from J&K Scientific Ltd. without further purification. Dissolved ultrasonically 10 mg diarylethene sample and 100 mg PMMA into 1.0 mL chloroform, the films were prepared by spin-coating method.

2.2. Synthesis of 1-(2-methyl-3-benzothienyl)-2-(5-2-methyleneaminophenol-2-methyl-3-thienyl)perfluorocyclopentene (10)

The synthesis method of the diarylethene **10** was shown in Scheme 2 and experimental details were carried out as followed. Compound **2** was prepared according to the reported method [29].

To a stirred solution of compound 2 (0.22 g, 0.50 mmol) in ethanol (2.5 mL), 2-aminophenol (0.056 g, 0.50 mmol) was added and continuously stirred. After refluxing for 5 h, the mixture was

cooled to room temperature and concentrated under vacuum. The crude product was purified by recrystallization with ethanol to give the compound **1o** (0.090 g, 1.71 mmol) as a yellow solid in 35% yield. M.p. 403–404 K; $^1\mathrm{H}$ NMR (CDCl₃, 400 MHz, TMS), δ (ppm): 1.98 (s, 3H, —CH₃), 2.30 (s, 3H, —CH₃), 6.86 (s, 1H, thiophene-H), 6.88–7.24 (m, 4H, phenyl-H), 7.31–7.76 (m, 4H, benzothiophene-H), 8.61 (s, 1H, —CH=N); $^{13}\mathrm{C}$ NMR (CDCl₃, 100 MHz), δ (ppm): 14.8, 15.38 115.15, 115.66, 119.94, 120.10, 121.98, 122.16, 124.64, 125.04, 125.36, 129.18, 131.80, 134.54, 137.98, 138.27, 140.53, 142.59, 147.63, 148.40, 152.24; IR (KBr, v, cm $^{-1}$): 759, 833, 845, 896, 989, 1033, 1056, 1097, 1114, 1038, 1183, 1278, 1366, 1377, 1486, 1560, 1599, 2223, 2891, 3412. LRMS, ESI $^+$ m/z 538.1 (MH $^+$, $C_{18}\mathrm{H}_{14}\mathrm{BrF}_6\mathrm{NS}$ requires 537.5); Anal. Calcd for $C_{26}\mathrm{H}_{17}\mathrm{F}_6\mathrm{NOS}_2$ (%): Calcd C, 58.09; H, 3.19; N, 2.61. Found C, 59.12; H, 3.15; N, 2.58.

3. Results and discussion

3.1. Photochromism of 1

Upon alterative irradiation with UV and visible light, diarylethene 10 underwent a reversible reaction in both acetonitrile $(2.0 \times 10^{-5} \text{ mol L}^{-1})$ and a PMMA film (10%, w/w) at room temperature. The changes in the absorption spectra and color of 10 induced by photoirradiation are shown in Fig. 1. In acetonitrile, the open-ring isomer **10** showed a sharp absorption peak at $264 \,\mathrm{nm}$ ($\varepsilon = 2.64 \times 10^4 \,\mathrm{L\,mol^{-1}\,cm^{-1}}$). Upon irradiation with 297 nm UV light, a new absorption band centered at 566 nm $(\varepsilon = 3.52 \times 10^3 \,\mathrm{L\,mol^{-1}\,cm^{-1}})$ emerged due to the formation of the closed-ring isomer 1c, accompanied with a color change from colorless to purple. The purple color was bleached to colorless upon irradiation with visible light ($\lambda > 450$ nm), and the absorption spectrum returned to the initial state of **10**. The absorption spectral change upon photoirradiation was accompanied by an isosbestic point at 390 nm, which clearly indicated a two-component photochromic reaction [30-32]. Similarly, diarylethene 10 showed favorable photochromism in a PMMA film. Irradiation of 10/PMMA film with 297 nm UV light resulted in the appearance of new absorption band at 576 nm, accompanied with a color change from colorless to purple. The purple color was faded to colorless by irradiation with visible light ($\lambda > 450 \, \text{nm}$). Compared to that in acetonitrile, the maximum absorption peak of 1c in a PMMA film was redshifted by 10 nm. The redshift phenomena may be ascribed to the polar effect of the polymer matrix and the stabilization of molecular arrangement in solid state [33].

The maximum absorbance for 1c as a function of time was determined by alternating irradiation with 297 nm UV light and visible light ($\lambda > 450$ nm) in acetonitrile and a PMMA film, and the result is shown in Fig. 2. After 10 repeat cycles, 38% degradation in acetonitrile and 13% degradation in a PMMA film were observed for 1c. This remarkable improvement may result from effective suppression of the oxygen diffusion in the solid state [21]. The observation could be testified by the following experiment. In a degassed acetonitrile solution of 1c, the coloration and decoloration cycles of 1c could repeat 1c0 times with only the degradation of 1c1% for 1c1.

Scheme 2. Synthetic route for diarylethene 1o.

Download English Version:

https://daneshyari.com/en/article/27057

Download Persian Version:

https://daneshyari.com/article/27057

<u>Daneshyari.com</u>