
Fusion Engineering and Design 87 (2012) 2136– 2139

Contents lists available at SciVerse ScienceDirect

Fusion Engineering and Design

jo ur nal homep age : www.elsev ier .com/ locate / fusengdes

Visualization of target inspection data at the National Ignition Facility

Daniel Potter ∗, Nick Antipa
Lawrence Livermore National Laboratory, United States

a r t i c l e i n f o

Article history:
Available online 4 July 2012

Keywords:
NIF
Visualization
WebGL
Web application

a b s t r a c t

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will
be required to measure the quality of the target capsules used to achieve this goal. Techniques have been
developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica
Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of
tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but
none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps
the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset
coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL
which will provide high level overview visualization of an entire dataset, with the capability to retrieve
finer details on demand, in addition to facilitating alignment of multiple datasets with one another based
on common features that have been visually identified by users of the system.

Published by Elsevier B.V.

1. Introduction

The National Ignition Facility (NIF) [1] at Lawrence Livermore
National Laboratory is the world’s largest laser. It has been built
with the goal of being the first facility to demonstrate controlled
laser-driven ignition. This is achieved through a process called iner-
tial confinement fusion (ICF), whereby extreme force is applied to a
hollow spherical, BB-sized capsule containing fusion fuel, causing
the fuel to compress and heat until a fusion reaction occurs. Due
to the extreme temperature and pressure required to achieve igni-
tion, energy must be distributed very uniformly around the capsule
during implosion. Isolated features on the surface of the capsule
can cause an uneven implosion, leading to radiative cooling of the
implosion core and lowering the probability of achieving ignition.

To better evaluate the target manufacturing process, and to gain
insight on how the shape of capsule surfaces affect the perfor-
mance of NIF experiments, each spherical target capsule’s surface
is measured twice: first using a phase-shifting diffraction inter-
ferometer (PSDI) [2] then, later in the assembly process, a Leica
Microsystems “Leica DCM-3D”, a surface profiling programmable
array confocal microscope. These instruments each produce a set
of images, containing both topography and reflectivity information,
that cover the entire capsule surface. A single dataset can produce
up to 1000 images, totaling several gigabytes in size. These images

∗ Corresponding author.
E-mail addresses: potter15@llnl.gov (D. Potter), antipa1@llnl.gov (N. Antipa).

can be viewed individually, but a method of viewing the complete
3D dataset in its spherical geometry is desired.

This paper introduces an image based visualization system for
data exploration of target shells at the NIF. The visualization soft-
ware combines multiple image sets into a single visualization in
order to facilitate alignment of data sets, and to provide a method
of navigating the data in ways that are not possible with existing
tools.

The next section describes the design of the overall system, from
the acquisition and storage of this data, to its visualization.

2. System design

Software has been developed to visualize this data in a three
dimensional space, much like Google Earth can be used to view
geographical data. Fig. 1 shows the system architecture of the appli-
cation.

2.1. Inspection and data storage

Raw image data and metadata are collected from the micro-
scopes and uploaded to an Oracle database. For the Leica
microscope data, an image analysis program is run which iden-
tifies features of interest in the individual images and records their
locations. During the imaging process for both systems, the cap-
sule is mounted to a rotating stage which allows the entire surface
to be imaged. The theta/phi position of the rotating stage at the
time an image is taken is stored as metadata with every image,

0920-3796/$ – see front matter. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.fusengdes.2012.04.019

dx.doi.org/10.1016/j.fusengdes.2012.04.019
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:potter15@llnl.gov
mailto:antipa1@llnl.gov
dx.doi.org/10.1016/j.fusengdes.2012.04.019

D. Potter, N. Antipa / Fusion Engineering and Design 87 (2012) 2136– 2139 2137

Fig. 1. Raw microscope image data is picked up by image processing routines which analyze and pre-process the images for visualization. The visualization layer is
implemented as a web application.

as well as other important metadata such as pixel and image size.
Display images are created from the raw image data during the
upload phase. Images are stored at multiple resolutions so that
lower resolution images can be downloaded first in the visualiza-
tion, and higher resolution images can be downloaded on demand.
This reduces the initial wait time for the user. These display images
are stored in the PNG image format, and add less than 10% to the
storage requirements of the raw data.

2.2. Web application architecture

Our web application relies on several open source technologies
and frameworks. On the database and server side framework end
we use JPA and Spring. JPA, or the Java Persistence API, is a frame-
work which allows us to easily map database objects to java classes,
simplifying communication with the database. We use the Spring
framework to create and inject these data access objects into the
application during initialization of the application server.

On the client side we build our user interface using jQuery,
and communicate with the server side Java code and JPA data
objects using RESTful web services. jQuery is a library built on top
of Javascript which simplifies development of Javascript code and
solves many cross browser compatibility problems associated with
Javascript. We have found that jQuery facilitates a separation of
concerns with different modules of the UI with its simplified event
model and extended libraries such as JavascriptMVC, which add
some object oriented capabilities to javascript programs. jQuery
also allows us to easily make AJAX (i.e. XMLHttpRequests) to pro-
vide a rich internet application with quick response times.

Our AJAX requests are made against RESTful web services, web
services made accessible over a URL using the HTTP protocol. These
serve as a data source that can be directly and easily accessed
through jQuery’s AJAX interface. We use the Java based Jersey API
for our web services. We find that a simple service can be set up
in a minimal amount of time using this framework. The Jersey API
also has plug-ins that can automatically convert java objects into
JSON data formats. JSON, or JavaScript Object Notation, is a format
similar to XML but tends to be more concise. It is also a convenient
format to use in Javascript based applications.

Converting our database model objects into JSON enables us to
use them in jQuery/Javascript in the same way we would use them

in server side java code. This simplifies the design of the system
as the representation of objects is consistent at all layers of the
application. 3D rendering is achieved using the WebGL framework,
while all other UI elements and logic is handled using jQuery based
libraries.

2.3. Functionality of the application

The functionality of the application is inspired by Google Earth,
where users can rotate, zoom, and pick out sites of interest on an
interactive 3d visualization of the Earth. Each image is positioned
in a 3D space, creating a spherical surface that the user can inter-
actively rotate and zoom in on.

To position images, it first queries the radius of the target, the
theta/phi coordinates of the stage relative to the microscope and
pixel width/height of each image belonging to the data set. A geom-
etry patch is generated representing the surface curvature spanning
the image, and each image is texture mapped onto its correspond-
ing geometry patch. Simple quads were originally used, but the
curved geometry makes some overlapping image features line up
better, and makes the overall target look more spherical when com-
pletely zoomed out. When the image is first loaded, its spherical
coordinate values are converted to Cartesian coordinate space, this
is where the geometry is placed during rendering. Before rendering
occurs, each geometry patch is rotated about its local Z axis by the
images phi value, and rotated about its local X axis by the images
theta value, making it face outwards at the proper angle. The final
result is displayed in Fig. 2.

Fig. 2 should give an idea of the utility of this visualization due
to the fact that over 200 images are involved. The darker borders of
the images in the smaller grayscale dataset make their size obvious.
Images in the other dataset are roughly the same size. It would
clearly be much harder to view these datasets image by image, or
even in groups of images. An advantage to being able to view the
entire dataset at once is that it gives users a spatial context for each
individual image.

Another feature provided is the listing of features of interest
found during the inspection phase mentioned in Section 3.1. Users
are able to sort this list by any attribute of interest. Upon clicking
a row in the list, the view automatically rotates to the location of
the feature that was clicked. This is done by calculating the angle

Download	English	Version:

https://daneshyari.com/en/article/271338

Download	Persian	Version:

https://daneshyari.com/article/271338

Daneshyari.com

https://daneshyari.com/en/article/271338
https://daneshyari.com/article/271338
https://daneshyari.com/

