
Fusion Engineering and Design 89 (2014) 2272–2277

Contents lists available at ScienceDirect

Fusion Engineering and Design

jo u r n al homep age: www.elsev ier .com/ locate / fusengdes

Software fault detection and recovery in critical real-time systems:
An approach based on loose coupling

Pekka Alho ∗, Jouni Mattila
Department of Intelligent Hydraulics and Automation, Tampere University of Technology, Finland

h i g h l i g h t s

• We analyze fault tolerance in mission-critical real-time systems.
• Decoupled architectural model can be used to implement fault tolerance.
• Prototype implementation for remote handling control system and service manager.
• Recovery from transient faults by restarting services.

a r t i c l e i n f o

Article history:
Received 30 August 2013
Received in revised form 7 April 2014
Accepted 22 April 2014
Available online 14 May 2014

Keywords:
ITER
Remote handling
Software
Fault tolerance
Dependability
Real-time

a b s t r a c t

Remote handling (RH) systems are used to inspect, make changes to, and maintain components in the
ITER machine and as such are an example of mission-critical system. Failure in a critical system may cause
damage, significant financial losses and loss of experiment runtime, making dependability one of their
most important properties. However, even if the software for RH control systems has been developed
using best practices, the system might still fail due to undetected faults (bugs), hardware failures, etc.
Critical systems therefore need capability to tolerate faults and resume operation after their occurrence.
However, design of effective fault detection and recovery mechanisms poses a challenge due to timeli-
ness requirements, growth in scale, and complex interactions. In this paper we evaluate effectiveness of
service-oriented architectural approach to fault tolerance in mission-critical real-time systems. We use a
prototype implementation for service management with an experimental RH control system and indus-
trial manipulator. The fault tolerance is based on using the high level of decoupling between services to
recover from transient faults by service restarts. In case the recovery process is not successful, the system
can still be used if the fault was not in a critical software module.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Remote handling (RH) systems are used to inspect, make
changes to, and maintain components in the ITER machine. Failure
in a mission-critical system like RH may cause damage and, per-
haps even more significantly, loss of experiment runtime, therefore
making dependability one of its most important properties. How-
ever, even if the software for the RH system has been developed
using valid development processes, the system might still fail due to
undetected faults, hardware failures, etc. Critical systems therefore
need to be able to resume operation after faults have occurred, but

∗ Corresponding author. Tel.: +358 505375726.
E-mail address: pekka.alho@tut.fi (P. Alho).

design of effective fault detection and recovery mechanisms poses
a challenge. This is due to timeliness requirements combined with
growth in scale and complex dynamic interactions in RH systems
and embedded systems in general.

Several programming languages and frameworks, e.g. Erlang or
OSGi for Java, support use of decoupled architectural models that
can be used to implement fault tolerance solutions and dynamic
loading of software modules, but these approaches are typically
used in non-critical applications that do not have requirements for
deterministic response times. In this paper we evaluate effective-
ness of the decoupled architectural approach in mission-critical
real-time systems using an experimental RH control system for
an industrial manipulator. The control system is based on a real-
time service oriented architecture (RTSOA) that we have introduced
and evaluated in [1]. Services (i.e. the applications that participate
in the control of the manipulator) are managed by a prototype

http://dx.doi.org/10.1016/j.fusengdes.2014.04.050
0920-3796/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.fusengdes.2014.04.050
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2014.04.050&domain=pdf
mailto:pekka.alho@tut.fi
dx.doi.org/10.1016/j.fusengdes.2014.04.050

P. Alho, J. Mattila / Fusion Engineering and Design 89 (2014) 2272–2277 2273

service manager that is used to detect faults and initiate recovery
processes.

The RH control system consists of several heterogeneous subsys-
tems, including equipment controller (EC), virtual reality (VR) and
operations management system (OMS), specified in the ITER RH
control system handbook [2]. This kind of cooperation of several
networked computational units is typical for the field of cyber-
physical systems (CPS), featuring a tight coordination between
computational and physical elements of the system. CPS research
aims to improve interoperability and openness between networked
controllers to produce more intelligent applications.

2. Background

Fault tolerance means avoiding service failures in the presence
of faults, and consists of error detection and recovery [3]. However,
recovery can introduce unpredictable delays that might be in con-
flict with the predictability requirements of real-time systems. A
typical approach for real-time fault tolerance is to use two or more
diverse versions of software. Such an approach is suitable, e.g. in
aviation, where the scope of critical systems is limited, and the cost
of creating multi-version software is distributed over a large num-
ber of aircraft [4]. However, for large and complex one-off software
systems, such as RH, use of multi-version techniques is difficult to
justify.

Key challenges for fault tolerance in RH systems include recov-
ery of state data, reliable detection of faults, fault recovery that
supports real-time requirements, and ensuring reliability of end-
to-end service chains. Safety of the system relies heavily on
reasoning about consequences of faults, which is an important open
research area due to the complex and stochastic nature character-
istic for CPS.

Previous research on real-time fault tolerance has focused
largely on redundancy-based solutions and reconfiguration. Gon-
zales et al. use adaptive management of redundancy to assure
reliability of critical modules by allocating as much redundancy to
less critical modules as could be afforded, thus gracefully reducing
their resource requirements [5]. Assured reconfiguration in case of
failures is used in [6]. This allows the primary function to fail and
then reconfigure to some simpler function – reconfiguration of the
system is a critical part, and it is formally verified. Simplex archi-
tecture by Sha et al. uses high assurance and high performance
control subsystems [7]. The high assurance subsystem is used to
keep the system within the safety envelope. ORTEGA architecture
improves the Simplex architecture by adding on-demand detec-
tion and recovery of faulty tasks [8]. An anomaly based approach
for detecting and identifying software and hardware faults in per-
vasive computing systems is proposed in [9]. The methodology uses
an array of features to capture spatial and temporal variability to
be used by an anomaly analysis engine.

Our work differs from these approaches by focusing on tran-
sient faults in a real-time system by using highly modular approach
instead of redundancy. Similar solution based on modularity
and fault isolation has been successfully used, e.g. in the non-
real-time MINIX operating system (OS) for driver management
[10].

3. Fault detection and recovery in real-time systems

3.1. System definition

Our hypothesis is that mission critical real-time systems can use
service management to recover from transient faults (discussed in
Section 5) in a loosely coupled software architecture. In this context,
we define a loosely coupled real-time system as follows:

Fig. 1. Logical system architecture.

• The system is made up of a set of periodic processes, i.e. services.
• Services are loosely coupled, having no direct interdependencies

or references to each other.
• Services can be distributed over network or located on a single

computer.
• Services communicate with a communication buses that facilitate

monitoring of communication deadlines.

Advent of modern, powerful processors to RH systems provides
a chance to mitigate the delays caused by the recovery process if
the fault is detected before deadlines. In an optimal case, a fault
can be detected and recovered before it causes service failures. If
fault recovery causes exceeding of a deadline, other services can
detect this and react accordingly by moving the system to a safe
state while simultaneously isolating the fault. Since this recovery
strategy does not rely on redundant versions, there is no need to
maintain consistency between replicas, which is a major challenge
for redundant systems [11]. We also leave formal methods out of
the scope of our solution because of architectural limitations and
costs associated with these methods are likely to be prohibitive for
ITER.

3.2. Architecture

The system architecture in our implementation is based on
RTSOA using data-centric middleware and an open source real-
time operating system (RTOS). It provides decoupled connections
for the services via local and global service buses (LSB and GSB) and
includes a service manager to monitor and manage services (Fig. 1)
[1].

The LSB is based on real-time queues, a communication mode
provided by the RTOS. A message queue can be created by one
service and used by multiple services that send and/or receive
messages to the queue. GSB is a wrapper that uses Data Dis-
tribution Service for Real-Time Systems (DDS) middleware for
networked connections; DDS is a standard for decentralized and
data-centric middleware based on the publish/subscribe model and
aimed at mission-critical and embedded systems. The standard
is maintained by the Object Management Group (http://portals.
omg.org/dds/).

3.3. Service manager and service configuration

Service manager is a local component used to start services
and detect faults. Service manager spawns the services as child
processes, according to a configuration file – more advanced con-
figuration methods could be supported, e.g. GUIs, web interface

http://portals.omg.org/dds/
http://portals.omg.org/dds/

Download English Version:

https://daneshyari.com/en/article/271549

Download Persian Version:

https://daneshyari.com/article/271549

Daneshyari.com

https://daneshyari.com/en/article/271549
https://daneshyari.com/article/271549
https://daneshyari.com

