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a  b  s  t  r  a  c  t

The  superconducting  cable  with  multi-stage  twisted  wires  is  the  main  component  of  ITER  conductor.
This  paper  proposes  the  numerical  models  to describe  the  pattern  of  the  correction  coils  (CC)  cable  and
analyze  the  mechanical  properties  during  cabling.  The  current  models  give  approximate  simulation  of
space  structure  and stress–strain  curve  for  the  cable.  The  models  could  provide  theory  analysis  for  design
of  cable  pattern  and  improve  the  cabling  method.

Crown Copyright ©  2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

ITER is a joint international research and development project
[1,2] that aims to demonstrate the scientific and technical feasibility
of fusion power. The ITER magnet system is made up of four main
sub-systems: The 18 Toroidal Field coils, referred to as TF coils;
the Central Solenoid, referred to as CS; the 6 Poloidal Field coils,
referred to as PF coils; and the correction coils, referred to as CCs.
All coils with different dimensions used Cable-In-Conduit Conduc-
tors (referred to as CICC). The key-point in CICC is superconducting
cable.

The pattern of a superconducting cable is important for cabling,
and the modeling for the pattern with multi-stage twisted wires is
necessary. For example, we can choose the appropriate diameters
of dies and rollers according to the simulation. The modeling spa-
tial structure of strands is important for more accurate simulation
of structure void statistics, strain effect, AC losses, current distri-
bution, quenching, etc. Several models [3–6] have been carried out
to analysis the cable pattern. Mechanical properties of sub-cable or
cable are also very important for cabling. Large tension on strands
and cable can cause undesired single strand elongation or dam-
age during cabling. Unsuitable axial tension on the strands can
cause differences in spring-back strain of the strands from differ-
ent materials, possibly resulting in kinks and unengaged triplets. At
present, few researcher has attention on the mechanical properties
of the cable. Nemov et al used two models to solve the problem of
determining the superconducting cable stress–strain state under
tensile and twisting loads [7]. The first approach is based on the the-
ory of rope. The second approach is to solve the general elasticity

∗ Corresponding author.

theory equations with appropriate boundary conditions. In the two
models, the strand is supposed to be homogeneous and isotropic
with a constant Young’s modulus. Bajas et al. develop one finite ele-
ment model for CIC conductors, which describe the distribution of
axial strains, obtained form simulation results of both thermal and
Lorentz loadings [8]. A new mechanical model (CORD) is developed
to describe the strain and stress distribution for cable, sub-cable and
single wire under axial force, twist moment and bending moment
by Qin [9,10].

The  ITER CC cable is enclosed in a (stainless steel) conduit and
the void fraction is about 36%, shown in Fig. 1. The cables for the
ITER CC are made up of four stages of NbTi based strands. The final
cable is compacted by rolling. During this operation, the fourth-
stage sub-cables deform into 5 trapezoidal/triangular shapes that
are referred to as petals. The final stage cable is wrapped with
a stainless steel strip that provides mechanical protection during
jacketing and eases handling. Already in the phase of cable manu-
facture, the strands are subjected to stress in order to control the
cabling process and in addition, stress and strain distributions are
created in the strands. The stress level for cabling is important to
guarantee a good quality cabling pattern but at the same time, too
high stresses can affect the transport properties.

In this paper, the 3D numerical method is used to simulate every
stage of the CC cable. From the model, we can get the space struc-
ture of every strand, the space pattern and cross-section of every
stage. The mechanical property of CC sub-cable is analyzed by the
mechanical model (CORD). We  could get some useful information
from the model results for CC cabling. In Section 2, we give the
general descriptions of the 3D model and mechanical model. In
Section 3, we present the model results and comparison to the
experiments. We  discuss the mechanical properties of the sin-
gle strand and cable. The models can provide the approximate
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Fig. 1. Cross-section of CC conductor.

structure, stress and strain distribution in a cable. The simulation
results are not only important for cable manufacture but may  even
be more essential for cable and conductor analysis.

2. Numerical model description

In  this section, the 3D model and mechanical model are
described. All symbols used in this section are listed in the following
table.

List of symbols
d diameter  of single strand
pi twist pitch of the ith stage of cable
s  variable parameter, length of cable
ri twist radius of the ith stage of cable
Di diameter of the ith stage of cable
�i twist starting angle of the ith stage of cable
Np array of cable pattern
ni element of Np

Xi,j X-coordinate of the jth strand in the ith stage of cable
Yi,j Y-coordinate of the jth strand in the ith stage of cable
Zi,j Z-coordinate of the jth strand in the ith stage of cable
�p, �b, �t curvature components

2.1. Space structure model

We  construct the space structure for every stage of CC cable
in this section. We  assume that the X–Y–Z coordinate system is
right-hand standard coordinate system.

The CC cable pattern Np is 3 × 4 × 5 × 5. The parameter equation
of triplet can be obtained [6],
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X11 = r1 cos(�1 + �1) + d

2
cos ˇ

Y11 = r1 sin(�1 + �1) + d

2
sin ˇ

Z11 = s · cos ˛1

, (1)

where  r1 = 2/3d sin �/3, �1 = s · sin ˛1/r1, ˛1 = arctan 2�r1/p1, ˛1 ∈ (0,
�/2),  ̌ ∈ [0, 2�] .

The  parameter equations of every single strain in the ith (i > 1)
stage can be obtained by the transfer matrix [6],

Fig. 2. Loading acting on rod.
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where  m = n1 · n2 · · · ni−1, j = m + 1, m + 2, · · · , m · ni, � i = 2�/ni, and I
is the identity matrix with 1 × m.

The  transfer matrix [5,6] is

A =
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,

where  �i = s · sin ˛/ri, ˛i = arctan 2�ri/pi, ˛i ∈ (0, �/2).

2.2. Mechanical model

Every  stage of CC cable is subjected to axial force during cabling
(Fig. 2). The mechanical model is considered in this section.

In  the cartesian coordinate system (X–Y–Z), the Z-axis coincides
with the center line of the cable. The local coordinate system is
formed by Frenet frame (p–b–t) with unit principal normal, binor-
mal, and tangent vectors, shown in Fig. 3.

The single wire in the cable can be considered as one thin rod.
Now, a thin wire loaded with the force is considered, shown in Fig. 4.
Fp, Fb, and Ft are sectional force components of wires, and Mp, Mb,
and Mt are sectional moment components of wires. Fx, Fy, and Fz

are the components of the external line load, and Mx, My, and Mz

are the components of the external moment.
The equilibriums for the thin rod loaded can be obtained from

[11,12]:

dFp

ds
−  Fb�t + Ft�b + Fx = 0, (4)
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