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• In LM  blankets,  coolant/breeder  flows  are  expected  to  be  hydrodynamically  unstable.
• Possible  instabilities  are  related  to either  MHD  boundary  layers  or bulk  shear  layers,  typically  associated  with  high-velocity  near-wall  jets.
• In the mixed-convection  flows,  two  types  of turbulence,  either  weak  or strong,  have  been  observed.
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a  b  s  t  r  a  c  t

We  review  previous  studies  on  instabilities  and transitions  in  magnetohydrodynamic  flows  in  a special
context  of liquid-metal  blanket  applications.  In  the  past,  possible  transitions  in blanket  flows  were  mostly
attributed  to instabilities  in  the  Hartmann  layers.  More  recent  studies  show,  however,  that  the  side lay-
ers can  experience  instabilities  at sufficiently  lower  Reynolds  numbers.  This  suggests  that  in  the  blanket
flows, the  appearance  of  turbulence  can  most  likely  be  related  to  the  side  rather  than  Hartmann  layers.
Various  factors  that  may  affect  stability  in  blanket  flows  have  been  discussed.  In  particular,  buoyancy
forces  can  result  in potentially  unstable  inflectional  velocity  profiles.  First  computational  results,  illus-
trating  possibility  of  instabilities  and quasi-two-dimensional  turbulence  in  vertical  mixed-convection
flows  heated  volumetrically  are  presented.

 Published by Elsevier B.V.

1. Introduction

For decades, liquid metal (LM) breeder blankets have been
designed based on simplified inertia less flow models [1]. Recent
magnetohydrodynamic (MHD) studies demonstrate, however, that
even in a strong reactor-type magnetic field, inertia effects are
not negligible and, in fact, can be responsible for instabilities and
laminar–turbulent transitions. MHD  flows in rectangular ducts
are of particular importance in many breeding blanket designs,
where pure lithium or lead–lithium (PbLi) alloy, circulates for
tritium breeding and power conversion. Such MHD  flows are
known to exhibit pronounced inhomogeneity compared to their
hydrodynamic counterparts. In these flows, high velocity gradi-
ents can cause instabilities and eventually turbulence. In a strong
blanket-type magnetic field, turbulent flows are often foreseen to
be in a special form of quasi-two-dimensional (Q2D) turbulence
[2]. The inhomogeneities are caused by the flow-induced electric
currents that interact with the applied magnetic field resulting in a
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non-uniform Lorentz force, which changes the original flow in
many ways. These changes, in turn, may  influence the blanket per-
formance and its efficiency by affecting the pressure losses, heat
leakages into the cooling streams, tritium permeation and may
even worsen the safety conditions through the flow effects on cor-
rosion processes.

The full set of equations for liquid-metal flows in a fusion reac-
tor blanket consists of Navier–Stokes/Maxwell equations coupled
with the equations for heat and mass transport. When written in
the inductionless approximation (the magnetic field is considered as
given, without being affected by the fluid flow) the MHD  equations
take the following form (see, e.g.  [3]):

�

[
∂V
∂t

+ (V · ∇)V

]
= −∇p + �v∇2V + j × B0 + f, (1)

j = �(−∇ϕ + V × B0), (2)

∇ · V = 0 and ∇ · j = 0. (3)

Here, V, B0, j, ϕ, p, and t are the fluid velocity, applied mag-
netic field, electric current density, electric potential, pressure, and
time, whereas � denotes the density,� the kinematic viscosity, and
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� the electrical conductivity of the fluid. Frequently, variables are
expressed in dimensionless form by using characteristic scales,
such as U0 for velocity, B0 for magnetic field, and L as a length
scale. In doing so, the balance of momentum is fully character-
ized by two dimensionless groups. One is the Hartmann number
Ha = B0L(�/��)0.5, the square of which represents the ratio of elec-
tromagnetic to viscous forces. The second is the hydrodynamic
Reynolds number Re = U0L/�, which measures the ratio of inertial to
viscous forces. The term f on the right-hand side of the momentum
equation denotes a volumetric force different from the electro-
magnetic one, which typically represents the gravitational force.
For applications in fusion with variations of the fluid density due
to strong temperature gradients, f stands for the buoyant force
(for more details, see Section 6). The contribution of buoyancy
with respect to viscous forces, is described by the Grashof num-
ber Gr = gˇ�TL3/�2, where  ̌ is the volumetric thermal expansion
coefficient, g is acceleration of gravity, and �T  is a characteristic
temperature difference in the fluid. Typical values of these parame-
ters are: Ha = 103–104, Re = 103–105, and Gr = 107–1012. In the case
of rectangular duct flows, the Hartmann length b (the half of the
duct width in the direction of the applied magnetic field) is usu-
ally used as the length scale. In Section 6, Ha is constructed using
dimension b, while dimension a (half of the duct size in the direc-
tion perpendicular to the applied magnetic field) is used as a length
scale in the definition of Gr and Re.  In the present paper, we  review
instabilities and transitions, which can be foreseen in conditions
of either a self-cooled or a dual-coolant lead-lithium (DCLL) blan-
ket [1]. We also present first new results for volumetrically heated
MHD  flows.

2. Hartmann layers

The stability of Hartmann layers, which are formed at the duct
walls perpendicular to the applied magnetic field and associated
transitions to turbulence have received so far the most consid-
eration. Several theoretical studies based on the linear stability
analysis in the case of ideally insulating walls have predicted a
critical Re number (above which the flow in the Hartmann layer
becomes unstable and eventually turbulent) to grow linearly with
the Hartmann number as Rec = 48, 000Ha [4], while the experimen-
tal studies predict Rec = 380Ha [5]. The linear dependence of the
critical Re number on the Hartmann number is usually explained
by the fact that the ratio Rec/Ha represents the critical Re number
based on the thickness of the Hartmann layer ∼1/Ha such that the
instability mechanism is similar to that in ordinary boundary-layer
hydrodynamics and owns its origin to the development and growth
of the Tollmien–Schlichting waves. Higher critical Reynolds num-
bers can be expected in electrically conducting ducts due to higher
dissipation losses. As a matter of fact, this type of instability and
turbulence transitions are unlikely to occur in any LM blanket due
to very high values of Ha such that the ratio Re/Ha is much below
its critical threshold.

3. Side layers

Side (Shercliff) layers are formed at the duct walls parallel to the
magnetic field and are

√
Ha thicker compared to the Hartmann lay-

ers. The stability threshold for the Shercliff layers, assuming that the
Hartmann layers are stable, was derived in [6] by using the linear
and energy stability analysis for the case of a non-conducting duct.
The two predictions for the critical Reynolds number in the limit of
a strong magnetic field are Rec = 48,  350

√
Ha and Rec = 65.32

√
Ha

correspondingly. In this case, the ratio Rec/
√

Ha represents the crit-
ical Reynolds number based on the thickness of the Shercliff layer
as the characteristic length. By comparing the two critical Reynolds

numbers, one for the Hartmann and one for the side layer, it is
obvious that the side layer is more unstable than the Hartmann
layer. For example, if Ha = 10,000, the laminar–turbulent transi-
tion in the Hartmann layer can be expected at Rec = 3.8 × 106, while
for the Shercliff layer the critical Re number is by orders of mag-
nitude smaller: Rec = 6532. This indicates that in the LM blanket
flows, the appearance of turbulence can most likely be related to
the instability of the side rather than Hartmann layers.

4. Ducts with electrically conducting walls

In the case of a conducting thin-wall rectangular duct, the elec-
tric current induced in the flow bulk closes its path through the
Hartmann and side layers and through the adjacent walls. This
electric current distribution is responsible for the formation of the
so-called “M-shaped” or “M-type” velocity profile, whose distin-
guished features are the two symmetric high-velocity jets at the
side walls along with the near-uniform core region bounded by the
jets and the Hartmann layers [7]. The jets themselves are composed
of two legs owing to the wall effect on one side and the gradient-free
bulk flow opposed by the Lorentz force on the other side. In the wall-
side leg of the jet, the velocity exhibits changes from zero at the
wall to the maximum without demonstrating any special points,
while in the bulk-side leg, the velocity drops from the maximum
to the core value exhibiting an inflection point, where the vortic-
ity reaches its maximum. The existence of two  inflection points in
the basic velocity profile suggests that under certain conditions,
such a flow becomes unstable and eventually turbulent. The cor-
responding hydrodynamic instability is of Kelvin–Helmholtz type
(also known as “inflectional instability”), which appears in the
form of two  rows of counter-rotating bulk vortices. Such insta-
bilities were observed, for example, in the fully developed flows
with the M-shaped velocity profile by Reed et al. [8]. The instability
phenomena are however not limited to only inflectional instabil-
ity. More complex, flow structures can occur due to interaction
of the bulk vortices with the near-wall liquid. This kind of phe-
nomenon is often referred to as the “vortex–wall” interaction but
in the specific context of the MHD  wall-bounded flows in a strong
magnetic field, where the flow dynamics is essentially Q2D, this
vortex–wall interaction is not yet well understood. In addition to
inflectional instability, another instability mode has been recorded
in the experiments [9]. In accordance with the original author’s
terminology [9], in the Type I instability, the typical flow pattern is
composed of anticlockwise-rotating periodic vortices, whose cen-
ter of rotation is located in the bulk-side jet leg. The source of energy
supply to these vortices is the bulk-side shear layer and the pri-
mary instability mode seems to be the inflectional instability. In
the Type II instability, the near-wall vortices are clockwise-rotating
with their center of rotation in the wall-side leg of the jet. These
vortices cause a breakdown of the jet structure reducing the maxi-
mum  velocity and increasing its thickness compared to those in the
undisturbed flow. Recently, the stability problem for a conducting
rectangular duct was revisited experimentally in [10] for the large
aspect ratio. The first onset of instability was observed at a crit-
ical Reynolds number mostly independent on the magnetic field
strength. The measured small fluctuations remain confined to nar-
row regions close to the side walls, leaving the major part of the
core unaffected and laminar. By increasing further the flow rate
this behavior persists until a second critical Reynolds number is
reached, above which perturbations amplify quickly by one or more
orders of magnitude. Similar behavior (but for lower velocities and
lower magnetic field strengths) has also been predicted recently in
3D numerical computations in Ref. [11], where a sudden increase in
the energy of perturbations by two orders of magnitude was  found
as the Reynolds number increases. The linear stability analysis
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