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a  b  s  t  r  a  c  t

The  International  thermonuclear  experimental  reactor  (ITER)  concept  implies  a  variety  of  operating
modes,  design  complexity  and demand  for high  reliability.  A  point  of the major  concern  is the  tran-
sient  electromagnetic  (EM)  effects.  Complex  electromagnetic  behaviour  due  to strong  inductive  coupling,
the presence  of numerous  field  sources,  and  a  range  of  plasma  burn  scenarios  requires  careful  predic-
tive simulations.  Different  mathematical  models  applicable  for the  design  and  optimization  studies  are
reviewed.  Practical  experience  in  developing  detailed  global  models  to investigate  eddy  currents,  EM
forces and other  EM  loads  is  summarized.  Two  numerical  techniques  implemented  in  the  dedicated
computer  codes  are  compared,  and  the  validity  of relevant  models  is  discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Electromagnetic transients in tokamaks are one of the major
challenges in their design. All design stages of the ITER project
involve careful electromagnetic studies [1–3].

A pulsed operation [3] causes the appearance of large elec-
tromagnetic loads and thermal loss, that imposes significant
limitations on the reactor design. This necessitates development of
detailed computational models to investigate anticipated eddy cur-
rents, mechanical (ponderomotive) forces and heat loads deposited
on conducting components. The study will be even more compli-
cated in case of a pronounced surface effect of eddy currents.

In tokamaks, it is mandatory to take into account the inductive
coupling between the main components. This demands for building
a global model, at least for checking computations and a predic-
tive analysis, and significantly limits the electromagnetic analysis,
based on local models. Particularly, for the ITER blanket system,
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a series of intensive benchmark studies [4,5] with different codes
were launched in order to validate global 3D models for EM anal-
yses. Obtained by the domestic parties to an international project
positive results [6] allowed going to the specific calculations that
have demonstrated the coincidence of the data [7].

Reasoning from the machine sizes [1,9] and characteristic time
constants of the EM transients [8],  the ITER field can be modelled
using the quasi-stationary approach [9,10].

The objectives of the study conducted were to compare two
approaches, one based on the magnetic shells and other using 3D
finite elements to the development of global computer models for
ITER. The algorithms specific for tokamaks, in particular for ITER,
are discussed that summarizes authors’ eighteen-year experience
in electromagnetic and optimization studies.

A general approach to modelling a transient EM process in
conducting structures is well known and has been justified by a
number of analytical solutions [9–15]. A system of the Maxwell
equations is formulated in terms of the field vector B and elec-
tric field strength vector E (for simplification, a non-ferromagnetic
conductor is assumed). The system is complemented with the con-
stitutive equation to relate the electric field strength E and current
density � as E = �� for an isotropic medium defined by a scalar

0920-3796/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2011.12.015

dx.doi.org/10.1016/j.fusengdes.2011.12.015
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:sytch@sintez.niiefa.spb.su
mailto:sytch@niiefa.sintez.spb.su
dx.doi.org/10.1016/j.fusengdes.2011.12.015


1520 V. Amoskov et al. / Fusion Engineering and Design 87 (2012) 1519– 1532

resistivity �. In a general case, a nonlinear tensor function is applied.
Also, the known boundary conditions [10] are added to this system
of equations for the B and E components on the conductor-vacuum
boundary. The functions defining an extraneous transport current
distribution are assumed known. Adding the boundary conditions
of infinity, symmetry and initial conditions, we obtain a complete
system of equations applicable for specific problems.

It is known that about 86% of the current generated by harmonic
oscillations with frequency ω in a non-ferromagnetic conductor
with resistivity �0 will be concentrated in a skin layer [9,10] with
the depth defined as

2�0 =
√

8�0

�0ω
(�0 = 4� · 10−7 H/m)

At characteristic frequency 104 Hz, the skin layer for a copper con-
ductor has a depth of 1.4 mm.

Let the characteristic time interval for a pulse field with the
impulse front �t  be equal to one fourth of the oscillation period
T = 4 × �t.  For a nonmagnetic steel with a conductivity 10 times
less than that of copper a skin layer depth 2�0 varies in the range
8.9–28.2 mm at the frequency {�1 = 2�/(4 × 0.1 ms)  = 1.5 × 104 s−1,
�2 = 2�/(4 × 1.0 ms)  = 1.5 × 103 s−1}.

This solution is obtained for an infinite half-space uniform con-
ductor.

Assuming a steel conductor to be of a 60 mm thickness wall, as
for the ITER vacuum vessel shells, we can evaluate the characteris-
tic time interval as �t  = �/(2�)  = 4.5 ms  at the skin layer depth of
60 mm.  If the field varies in time exponentially with the time con-
stant �0, the frequency ω can by substituted by the inverse value
1/�0 [1].Compared with the above estimates for a semi-infinite
space or an infinite layer, a finite size of the conductors reduces the
time scale of the field penetration. Therefore, as a rule, the analysis
should be based on numerical simulation.

Account for the operating temperature of the ITER conducting
structures (for the cooling of the conductor) can lead to an addi-
tional increase of the skin effects. For accurate analysis, a coupled
problem should be solved for the total temperature distribution
and local loads due to the eddy current.

Analytical solutions almost never provide the required accu-
racy for simulation of the EM transients in tokamaks [1,2]. This has
inspired the development of a variety of simulation approaches:
from simplified [1] or 2D [16–18] methods to 3D methods in
the integral or differential formulation [19]. Nevertheless, analyti-
cal solutions allow qualitative description of the field penetration
mechanism, efficient assessment of the space and time limitations
for computational models and selection of a discretization step on
the FE mesh.

A  significant number of the ITER conducting structures may  be
described with the use of thin-walled elements with the charac-
teristic thickness much smaller than other their dimensions. For
the qualitative description a set of analytical solutions are applied
[9] for the magnetic field penetration through conducting sheets.
For the first time the field penetration was analytically described
through solving a thermo diffusion problem [10] for an infinite
conducting layer (flat sheet) with a thickness d at the bound-
ary conditions B(0,t) = B1(t), B(d,t) = B2(t) and the initial condition
B(x,0) = f(x). The field was assumed uniform. The axis X was directed
inward the layer normally to its surface. The origin of coordinates
was located on the surface. The simplest solution has a form

f (x) = B0 sin
(

�x

d

)
, B1 = B2 = 0 ⇒ B(x, t)

= B0 sin
(

�x

d

)
exp

(
−�2�0t

�0d2

)

subject to zeroed boundary conditions. In this case the field decay
occurs without a spatial re-distribution. The characteristic decay
time for the first harmonic �0 is derived as

�0 = �0d2

�2�0

This relation corresponds to the asymptotic decay for any initial
field distribution assuming zero external field. Higher harmonics
tend to decay more rapidly. If the layer thickness is 60 mm,  as is an
example above, the decay time is:

�0 = �0 × 36 × 10−4

p2 × 6 × 10−7
= 0.8 ms.

It should be noted that for a constant field applied periodically
or a pulsed field with a cyclic frequency ω [9,13],  the analytical
solutions for the field penetration in an infinite flat layer are typ-
ically presented in terms of the characteristic decay time �0 and
characteristic thickness �0. For this case a uniform field distribu-
tion is considered assuming the size of the field penetration area
is much smaller than the characteristic dimension R0 of a region of
a variable external field. These solutions can be applied to confirm
the validity of computational models or select a discretization level
for FE meshing.

The penetrating field behaviour can be investigated using solu-
tions for the field generated by current filaments (round turn,
parallel conductors with counter currents, or thin flat loop) located
in a plane parallel to a layer with the boundaries x = 0, x = −d. One
can obtain an asymptotic decay of a tangential field BF(−d,t) [8]
outward a layer as t → ∞.

If  the field penetration in the layer is much smaller than its thick-
ness as well as the characteristic dimensions of a magnet system,
the solution for a thin current loop located in the plane x = h can be
found via expansion of a small parameter (�0t/�0d2) and reduced
to the principal term.

The tangential field beyond the layer at t → 0 is expressed in
terms of the field derivative ∂bF (0)/∂h calculated on the surface
x = 0 for the loop with a unit current. For the instantaneous current
jump from 0 to i0

BF(−d, t) = −8
∂bF(0)

∂h
i0

(
�0t

�0d2

)3/2
d√
�

exp

(
−�0d2

4�0t

)2

,

for the linear current increase i = kit;

BF(−d, t) = −32
∂bF(0)

∂h
kit

(
�0t

�0d2

)5/2
d√
�

exp

(
−�0d2

4�0t

)2

.

In this case the characteristic decay time is determined by the rela-
tion

1
�a

= 4�0

�0d2
.

In concordance with [9],  the field penetration through an infi-
nite flat sheet can be considered. The sheet thickness is assumed
much smaller than the characteristic dimension R0 of the region
with a variable external field. So, this assumption makes it possi-
ble to determine the current density through a single component �F
parallel to the layer surface F. The normal field components are con-
tinuous at the boundary Bx1 = Bx2, the tangent field components are

determined by the condition [n2, (B2 − B1)] = �0
∫ d

0
ıF dx = �0JF

(the square brackets are for a vector product).
Assuming instant appearance of an external field in the region

1 in front of the sheet, EM transients will be described in 3 stages.
The first stage occurs at t � �1 = �0d2/�0. At this time the cur-

rent is concentrated in a layer � < d. The field beyond the sheet in
the region 2 is much lower than in region 1. The field in the region 1
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