Fusion Engineering and Design 85 (2010) 419-422

Contents lists available at ScienceDirect

Fusion Engineering and Design

" Fusion Engineering
=== nd Design

journal homepage: www.elsevier.com/locate/fusengdes e

Web services usage in distributed file systems

V.F. Pais2:b:*

2 National Institute for Laser, Plasma and Radiation Physics (INFLPR), Lasers Department, Romania
b Faculty of Automatic Control and Computers, “Politehnica” University of Bucharest, Romania

ARTICLE INFO ABSTRACT

Article history:
Available online 4 March 2010

Keywords:
Web service
Distributed file system

This paper investigates the possibility of using web services as the building blocks for distributed file
system, instead of the traditional RPC or RMI.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fusion experiments are a complex research activity involving a
large volume of data collected from each experiment. Processing of
this data is usually accomplished by using parallel codes, running
on multiple nodes of a cluster or in a GRID environment. Thus a
distributed file system accessible from all the processing nodes is
required. Furthermore, given the various hardware and software
platforms used in fusion research, such a distributed file system
cannot be linked to any specific operating system, like Microsoft
DFS, available on some Microsoft Windows platforms, or OpenAFS
available on Linux, but only partially supported on Windows.

Web services allow applications to interact without human
intervention through dynamic connections. This automated inter-
action is possible due to technologies like Extensible Markup
Language (XML), used for data transfer, XML Schema, for describing
the data, and Web Service Definition Language (WSDL), for identi-
fying the available web service methods.

Modern programming languages provide the required mecha-
nisms for easily producing and consuming web services. In most
cases, it is possible to have a “proxy” class automatically generated
from the WSDL, thus becoming very easy to develop applications
based on web calls.

Given the easiness associated with web service development,
during the last years their usage in applications increased. However,
this is true mostly for high level applications. Therefore, this paper
tries to study the possibility of using web services for low level
applications, especially a distributed file system.

* Correspondence address: National Institute for Laser, Plasma and Radiation
Physics (INFLPR), Lasers Department, Atomistilor 409, PO Box MG-36, 077125
Magurele, Romania. Tel.: +40 721678357.

E-mail address: vasile.pais@inflpr.ro.

0920-3796/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2010.02.013

In order to study the impact of having a web service interface
offering distributed storage, a test file system was implemented:
“OpenWebDFS”.

2. OpenWebDFS nodes

Each machine taking part in this distributed file system is called
a node. It can implement one or more of these functions: master,
storage and access.

“Master” nodes offer locking mechanisms, while “storage”
nodes are actually storing blocks of data. Each file can be found on
several “storage” nodes and at least one “master” node can resolve
concurrent access issues.

“Access” nodes offer an interface to the file system. They can
take the form of a web interface or an operating system driver.

Considering the three types of nodes, a complete installation
must contain at least one of each node type. In order to increase
the available space, additional “storage” nodes can be added. Also,
additional “master” nodes ensure protection against failure while
working on certain files and additional “access” nodes allow file
system access from various points.

OpenWebDFS functions were implemented using a combina-
tion of PHP and C. The high level language PHP was used to
create the web services that provide most of the file system func-
tions. In addition to the standard PHP functions, the NuSOAP [1]
library was used. This choice is justified by its extensive debugging
facilities, offering easy access to all parts of the SOAP messages
(request/result/fault), thus making it easier to find and resolve
errors.

An example “access node” has two parts: a web service imple-
mented in PHP, offering methods for accessing files and directories
and a FUSE (FileSystem in User Space) [2] Linux module, allowing
the distributed file system to be mounted as a regular Linux file
system.


http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:vasile.pais@inflpr.ro
dx.doi.org/10.1016/j.fusengdes.2010.02.013

420 V.F. Pais / Fusion Engineering and Design 85 (2010) 419-422

The communication between the FUSE module and the PHP
web service is achieved through the gSOAP [3] framework. gSOAP
is a cross-platform open source C and C++ software development
toolkit that generates C/C++ RPC code, XML data bindings, and effi-
cient schema-specific parsers for SOAP Web services and other
applications that benefit from an XML interface. The gSOAP toolkit
offers a comprehensive and transparent XML data binding solution
for C and C++ through autocoding techniques. Autocoding saves
developers substantial time to implement SOAP/XML Web services
in C/C++.In addition, the use of XML data bindings significantly sim-
plifies the use of XML in applications by automatically mapping
XML to C/C++ data types. Application developers no longer need
to adjust the application logic to specific libraries and XML-centric
data representations such as DOM.

The “storage node” is used to store the actual content of the vari-
ous file system resources. The size reported by the file system is the
total size of all storage nodes. Each OpenWebDFS implementation
requires at least one storage node.

Data is stored in blocks. The size of these blocks must be the
same across the entire file system. For each non-empty resource, at
least one block will be allocated. In case the file size is not a multiple
of block size, space will become wasted on the storage node. Thus,
the reported used percentage of the file system may differ from the
actual size of all files.

A “master node” stores information about the overall file sys-
tem organization and status. However, the most important role
of a master node is to provide locking mechanisms for accessing
resources.

3. OpenWebDFS resources

In order to better understand the capabilities of OpenWebDFS, it
is important to have a knowledge of how resources are represented
internally. Additionally, some information regarding the sizes of the
various elements involved is presented only to give a general idea
of the additional data carried with each request between the file
system nodes.

Everything is considered to be a “resource” (including directo-
ries, files and metadata). A “resource” has three characteristics:
resource identifier (RID), resource map and (optional) storage
blocks on one or more storage nodes.

The resource identifier is used for locating resources, therefore
it must be unique and currently has a fixed length of 80 characters.
The file/directory identified by a path name in a regular file system
is translated by the access node to a RID. In order to facilitate access
to certain resources, the first character in the RID denotes the type
of resource (D =directory, B=binary, M = metadata, R=root).

When a master or storage node receives a request for an
unknown resource it will respond by throwing a web service fault.
This is propagated up the request chain to the access node that
made the corresponding request. Finally, it is up to the access node
to translate the fault into a file system error and give it to the
operating system.

Whenever a new computer becomes a file system node, it will
generate for itself a unique identifier. Currently it has a fixed length
of 40 characters and is intended to allow for computers to have
more than one or varying network addresses. This identifier then
becomes part of all RIDs generated by the current server.

The actual content of a resource is stored on storage nodes and
it is determined based on the resource type.

A resource map is created for each resource, containing the size
of the resource content and its distribution across storage nodes.
All resource maps are stored on the master node(s). They are not
stored in the storage nodes and their size is not reflected in the
used blocks of the file system. The structure of a resource map is
presented in Fig. 1.

Fig. 1. Resource map structure.

The first line of the resource map always contains the resource
true size (in bytes). If the size is 0, then this may be the only line
the resource map (this is the case for a newly created resource).
Starting with the second line, there are the addresses of the actual
storage blocks used to hold the resource content. MID stands for
Machine_ID of the storage node holding the block, while DID stands
for Data_ID and is significant only for the storage node. It is the
address of the storage block inside its storage node.

If a file is not replicated, then each line will contain a sin-
gle MID,DID definition. For a replicated file, each block can be
replicated on any number of machines (it can be replicated even
multiple times on the same storage node). Since replication takes
place at block level, rather then file level, each line can have a
different number of MID,DID pairs. This is useful for creating a
“replicator” daemon that takes care of replicating files in the back-
ground.

A “directory” resource holds links to other resources available
in the current folder. It contains a RID on each line. An empty direc-
tory has an empty content (no RIDs are present). For each directory
resource there is an associated metadata resource.

The “root” resource is a special “directory” resource, containing
the base of the file system. There can be only one “root” resource
for a certain OpenWebDFS implementation.

A “binary” resource is used to hold the content of regular files.
The actual content of a file is stored in this resource “as-is” (without
any modification from OpenWebDFS).

Metadata resources are used for storing information about other
resources. Both “binary” and “directory” resources have one “meta-
data” resource that is automatically created and managed by the
file system. Currently, such resources contain information regard-
ing the creation and modification time, the rights and the name of
the associated resource. There is no limitation on the characters
that can be used for a resource name. Nevertheless, the oper-
ating system may impose certain restrictions for the name of a
file/directory. Therefore, it is the user’s responsibility to choose
appropriate names when resources are to be accessed from multi-
ple operating systems.

Each request between file system nodes must contain enough
information to properly identify the requested resource. Addition-
ally, during certain requests metadata must be read, for example
when verifying the user rights or when resolving RIDs back to
human readable names. Therefore, each message passed between
two nodes carries additional information.

4. File system tests

In order to test the influence of web services over the file system
performance, a small test network was created. It is comprised of
two virtual machines, created using VMWare [4] Server 2.0, each
having 1 64-bit CPU, 256 Mb RAM and 80 Gb HDD. They were run-
ning 64-bit Scientific Linux [5] with kernel 2.6.18-92.1.17.

The tests that were performed on this system were designed to
detect the increase in network load due to encapsulation of data
in web service specific messages. Since all the traffic is directed to
the standard HTTP port 80, it was considered sufficient to analyze



Download English Version:

https://daneshyari.com/en/article/272337

Download Persian Version:

https://daneshyari.com/article/272337

Daneshyari.com


https://daneshyari.com/en/article/272337
https://daneshyari.com/article/272337
https://daneshyari.com

