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a b s t r a c t

The Beam Tracing Method, which describes electromagnetic wave propagation in the short wavelength
limit including diffraction effects, is applied to microwave reflectometry. The torbeam code has been
augmented with relativistic corrections to the electron mass – which are necessary for a reliable descrip-
tion in high temperature plasmas such as in ITER, and a beam coupling model for the receiving antenna
coupling. The propagation and reception behaviour of reflectometer probe beams in the ITER geome-
try is computed. The received power is affected by the intensity of the beams, the offset of the beams
respectively to the receiver antenna and the angle of incidence. Using a magnetic field derived from a
3D equilibrium it is shown that the effects of toroidal field ripple in ITER on the beam propagation are
negligible. Various antenna configurations for the ITER low field side reflectometer are proposed and
analyzed, particularly their sensitivity to plasma height variations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Microwave reflectometry is a widely used diagnostic
technique for studying magnetically confined plasmas. A
microwave/millimeter-wave beam is launched into the plasma
(usually perpendicular to the confining magnetic field and parallel
to the density gradient) where it propagates until it reaches the
cutoff condition (where the plasma refractive index goes to zero)
and is reflected. The refractive index depends on the probing
microwave frequency ω, the plasma density ne, and (for X-mode
polarization) the magnetic field B, and hence different parts of the
plasma can be probed by varying the microwave frequency. By
measuring the phase delay of reflected beam information on the
radial profile of the electron density and its fluctuations can then
be obtained [1,2].

On ITER several reflectometer diagnostic systems are being
developed to measure the edge and core density profiles, the
density fluctuations as well as the plasma position and rota-
tion [3,4]. The primary system is the so-called Low-Field-Side
Reflectometer (LFSR) system which consists of several reflectome-
ters probing the plasma mid-plane from the tokamak outer, or
low magnetic field side. The LFSR system design has evolved
steadily in recent years [4–7]. The most challenging aspect of the
system is the design of the ‘front-end’ components – the anten-
nas and waveguide transmission lines which will be installed
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in the vacuum vessel port-plug. The number of antennas, their
position, orientation and size (i.e. gain) will critically affect the
diagnostic’s ability to meet the measurement requirements [4].
Hence careful design of these components, based principally on
simulation studies, will be crucial to the success of the diagnos-
tic.

In this paper a detailed investigation of the basic behaviour
of the beam propagation dependence on the antenna parame-
ters is presented using the torbeam beam tracing code (which
includes diffraction effects and relativistic corrections) with sim-
ulated ITER magnetic equilibrium and density and temperature
profiles. Several possible antenna configurations are investigated
using the beam tracing code coupled with antenna power cou-
pling calculations. This allows a much more rigorous assessment
and comparison of their relative performance and merits than was
previously available [7].

The paper begins with a description of the computational model
used, including the modeling of the launched beam, a background
to the beam-tracing equations, and the formulation of the beam
coupling efficiency from which the received power is calculated. An
outline of the LFSR operational range together with details of the
ITER configuration then follow. The criteria for the assessment exer-
cise are then presented. The results are divided into two sections:
first the basic behaviour of a single launched microwave probe
beam is described and how it depends on the plasma geometry
and the launch antenna parameters. Next, a detailed assessment of
specific transmit (launch) and receive antenna configurations, such
as monostatic, bistatic, hybrids, antenna arrays and their variations,
is presented.
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Fig. 1. Launch of Gaussian beam from corrugated waveguide.

2. Computational model

2.1. Modeling of launched beam

The ITER LFSR system will use circular aperture type anten-
nas embedded into the equatorial port-plug blanket module. The
antennas will be fed by low-loss oversized corrugated circular
waveguide supporting the HE11 waveguide mode [8]. This mode
couples in to an Gaussian beam antenna radiation pattern after a
short distance (≈1/3· Rayleigh length, compare Fig. 2 in [9]). Fig. 1
shows the behaviour of the beam. In this frame, the normalized
wave-function of the launch/receiver antenna radiation pattern �
follows from the vacuum solution for Gaussian beams:
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where the beam width, which is the radius of the 1/e2 contour of
the intensity cross-section, and phase front curvature are [10]:

w(x) = w0

[
1 +
(
x

xR

)2
]1/2

, R(x) = x
[

1 +
(
xR
x

)2
]
, (2)

with x the distance from the antenna and xR = w2
0ω/2c the Rayleigh

length and K =ω/c the absolute value of the wavevector. The phase-
front radius of curvature at the antenna aperture is usually given
by the slant length of the antenna horn [10]. For the ITER antennas
the slant length will be very long, so a good approximation is to set
the phase-front curvature at the antenna aperture to infinity (i.e.
flat phase-front). Hence the waist of the launched beam, which is
given by w0 = 0.32D, is directly at the antenna aperture. At large
distances x � xR the following approximations hold:

w(x) ≈ x tan �div, R(x) ≈ x, (3)

with the divergence angle tan �div = 2c/ωw0. Thus, after a few
Rayleigh lengths the size of the cross-section is determined by
the divergence angle. The lower the frequency and the smaller the
diameter of the antenna the larger the cross-section.

2.2. Beam tracing

The propagation of the Gaussian beam through the plasma is
calculated using the beam tracing approach [11,12]. Beam trac-
ing is superior to ray-tracing [13,14] since it retains diffraction
effects, and yields an analytic expression for the electric field across
the beam profile, which is also possible, but not straightforward
with ray-tracing [15]. Beam tracing is also computationally fast
compared to full-wave simulations, since only ordinary differential
equations need to be solved instead of partial ones.

Beam tracing gives an approximate solution of the Maxwell
equations in weakly inhomogeneous media for wave-beams sat-
isfying the condition:

�� w � L, (4)

where � is the probing wavelength and L the typical inhomogene-
ity scale length of the medium. In the beam tracing solution the

propagation of the wave is described by a central ray, which obeys
the same laws as in geometric optics:
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where q˛ is the trajectory of the central ray, K˛ the wavevector of
the central ray and HM a solution of the dispersion function:
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with 	h the hermitian part of the dielectric tensor. In this work
the anti-hermitian part is assumed to be zero, i.e. there is zero
absorption. ˛ (and ˇ, 
) are indexes over the x, y, and z coordinates.

The electric field is expressed in terms of a complex phase s(�r) =
s(�r) + i�(�r):
�E(�r) = �A(�r)eis(�r)−�(r). (7)

where s(�r) describes the phase of the beam and �(�r) describes a
Gaussian cross-section. The scale ordering in condition (4) allows
a paraxial expansion, i.e. s(�r) and �(�r) are expanded up to second
order around the central ray:
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2
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The matrix s˛ˇ and the positive definite matrix �˛ˇ have been
introduced, where the complex quantity s˛ˇ = s˛ˇ + i�˛ˇ obeys a
complex matrix Riccati differential equation:
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The second order expansion parameter of Eq. (8), the matrix s˛ˇ,
is related with the curvature radius R of the phase front and the
second order expansion parameter of Eq. (9), the matrix �˛ˇ, is
related with the widthw of the beam, at which the intensity of the
beam drops to 1/e2 compared to the intensity at the central ray:

s˛ˇ∼ω/c
R
, �˛ˇ∼ 2

w2
. (11)

Analytic solutions of the beam tracing equations in a slab model are
presented in [16–18].

The torbeam code [20] solves the beam tracing equations
numerically in a tokamak geometry with experimentally pre-
scribed magnetic equilibria, density and temperature profiles.
torbeam uses the cold plasma approximation of the dielectric
tensor to calculate the beam trajectory and has implemented a gen-
eralized Snell’s law [21] to take into account the transition at the
vacuum plasma boundary. In ITER relativistic effects are expected
to be important due to the high core electron temperatures. This
was incorporated into the code using a simple, but well established,
approximation of an effective electron mass in the cold dielectric
tensor [22]:

meff = m0

(
1 + 5

kBTe
m0c2

)1/2

, (12)

where m0 is the rest mass of the electron, kB the Boltzmann
constant, Te the electron temperature and c the speed of light.
This approximation is in line with other models (e.g. [23]) and
is sufficient for our investigations which are mainly constrained
to the cooler (Te ≤ 5 eV) pedestal region. Mazzucato [22] has also
demonstrated that this approximation describes well the relativis-
tic effects on beam propagation to the cutoff. For ITER core probing
a fuller relativistic correction model may be required.
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