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Abstract

Results of coupled-mode theory for the study on coaxial gyrotron with two electron beams (CGTB) are given. The beam–wave interactions of
single-mode and dual-mode CGTB are discussed in details. Compared with the coaxial gyrotron with one beam (CGOB), the dual-mode CGTB
has distinguished advantages: the fundamental and high harmonic can be enhanced due to the coupling between two beams.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The research on gyrotrons remains to be one of the most attractive topics in modern science and technology for the following
important motivations: the strong demand of very high RF power for fusing research, the ITER program requires up to 1–2 MW,
CW at 170 GHz [1–4] the high power is also needed for various applications including those in Terahertz science and technology
[5,6]. In order to increase the output power, very high order modes in coaxial cavity gyrotron, TE34,19, etc., for instance, are used
[3]. However, up to now the real CW 1–2 MW gyrotron is not yet achieved [3,4]. In addition, the mode competition is serious in
these gyrotrons due to very high order mode operation. The gyrotron with two electron beams in a coaxial cavity has proposed
[7–9]. The device has a number of advantages, the output power can be enhanced and the mode competition can be significantly
improved. In this article, we will use the coupled-mode theory to investigate the beam-wave interactions of the coaxial gyrotron
with two electron beams (CGTB) operating at single-mode and at two modes with different cyclotron harmonics and compare the
beam-wave interactions of dual-mode CGTB with those of CGOB (coaxial gyrotron with one beam).

2. The theory of approach

2.1. Single-mode CGTB

The cross-section of a CGTB is showed in Fig. 1a and b denotes the outer and inner radii of the coaxial waveguide system. The
radii of the guiding center of beam 1 and beam 2 are R1 and R2, respectively.

For TE modes in a perfectly conducting coaxial waveguide, the E and H components of the electromagnetic field form the
following complete and orthogonal set of eigenfunctions [10]⎧⎪⎪⎪⎪⎪⎨
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Fig. 1. Schematic cross-section of the CGTB.

Here
→
r is the position vector, z the axis of the waveguide,

→
r⊥ the position vector in the plane perpendicular to the z axis and t is

the time. Substituting Eq. (1) into the inhomogeneous Maxwell equations⎧⎨
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we can obtain the following expressions
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where
→
Jb is the beam current density. For the CGTB,

→
Jb = →

J1 + →
J2,

→
J1,

→
J2are the current density of beam 1 and beam 2, respectively.

Multiplying both sides of Eq. (3) by
→
H∗

tn, Eq. (4) by
→
E∗

tn, and integrating over the cross-section of the waveguide, we can obtain the
following equations
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Here we have introduced the following new variables
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where Z1 = ωμ0/kz1, k2
z1 = k2 − k2

c1, kc1 is the cutoff wave number of the mode, k=ω/c, where ω is the angular frequency of
electromagnetic wave, c is the light velocity in vacuum.

In order to get the perturbed equation of electron motion in the electron-guiding center coordinate system, we assume [11]{
γ = γ0 + γ1 ; |γ1| << |γ0| ; r = r0 + r1 ; |r1| << |r0|
θ = θ0 + θ1 ; |θ1| << |θ0| ; z = z0 + z1 ; |z1| << |z0|

(8)

According to the relativistic equation of electron motion, introducing the following new variables{
v+ = ṙ1 + jr0θ̇1

v− = ṙ1 − jr0θ̇1
(9)
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