
Fusion Engineering and Design 84 (2009) 475–479

Contents lists available at ScienceDirect

Fusion Engineering and Design

journa l homepage: www.e lsev ier .com/ locate / fusengdes

A Web Services based system for the distribution of live information
at the FTU fusion experiment

L. Boncagnia,∗, C. Centioli a, L. Lattanziob, M. Panellaa, C. Torelli a, L. Zaccarianb

a Associazione Euratom/ENEA sulla fusione, Centro Ricerche Frascati, CP 65 - 00044 Frascati, Roma, Italy
b Dip. di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Via del Politecnico 1 - 00133, Roma, Italy

a r t i c l e i n f o

Article history:
Received 7 August 2008
Received in revised form 9 December 2008
Accepted 9 December 2008
Available online 29 January 2009

Keywords:
FTU
Broadcast
Web Services

a b s t r a c t

In this paper we describe LiveMonitor, an integrated system realized for the distribution of information
in fusion environments. The software tool is based on a client–server approach, where the server side
consists of a set of Web Services that collect data from a variety of data sources. LiveMonitor has been
successfully used at FTU, replacing and enhancing part of the core of the current message broadcasting
system. The tool integrates all the information needed by the control room personnel during the exper-
iments, namely the shot sequence status coming from the FTU Control System, videos of the plasma
discharge from the FTU ports cameras, and fresh data from the databases. From the hardware point of
view, the new system is made of a Linux node running the Web Services, while clients running on other
machines can display information on large (46′′) LCD monitors. The tool has been tested during FTU exper-
iments and can be further expanded to match the needs of the control room personnel and experimental
physicists.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

As in most long lasting experiments, the Frascati Tokamak
Upgrade (FTU) control and data management systems have under-
gone several upgrades during their lifetime. So far, the FTU
Broadcast system – a system devoted to the display of live informa-
tion in the Frascati research center – remained roughly the same
over the years. Recently, an increased demand for a more flex-
ible system has led to the development of LiveMonitor: a new
information distribution system that will replace the current one,
introducing furthermore the possibility of upgrades. The system
relies on a client–server architecture, where clients can pick up
the requested data from the information provided by Web Ser-
vices on demand. Data coherence among the different clients is
guaranteed by a refresh mechanism on the server side: one or
more receiver threads for each Web Service waits for data from
a selected source; when the data is ready the receivers collects it
and all the Web Service instances generated by clients requests
wake up and deliver a copy of the information to the clients. In
the following sections a short description of the system will be
given, together with implementation details and hints on further
developments.

∗ Corresponding author. Tel.: +39 06 9400 5245.
E-mail address: boncagni@frascati.enea.it (L. Boncagni).

2. Environment description

The current FTU broadcast system is made of a Macintosh pow-
erPC, a VGA/PAL converter and some PAL TV/Monitors sets located
in the FTU control room as well as in other buildings, where people
may require to know the live status of the experiment. During an
experimental session, the Macintosh acts as a TCP/IP server wait-
ing for status messages from the Control System. Depending on the
message content, the broadcast program behavior follows the state
diagram shown in Fig. 1 and consequently the experiment evolu-
tion, then dispatching the results of its own elaboration to the TV
sets using the VGA/PAL converter.

The events characterizing the typical shot evolution can be
roughly summarized as follows: in the initial state (Sequence Start
in Fig. 1) the FTU data acquisition system is initialized. In the Pre-
Run phase, lasting 120 s, the FTU Control System initializes all the
subplants configured for the specific experiment. The Start Run
state triggers the so called fast (i.e. fully hardware controlled) phase
of the experiment, lasting 30 s and ending with the End Run phase,
when the acquired data is collected and archived and the FTU sub-
plants are brought back to their idle state.

The layout of the broadcast system varies according to the
sequence evolution, with the exception of some persistent infor-
mation such as the name of the physicist in charge, the scientific
program name, the discharge name and the current date. In the ini-
tial state the broadcast system shows the shot number, the status
message and the other persistent information. During the Pre-Run

0920-3796/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2008.12.055

http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:boncagni@frascati.enea.it
dx.doi.org/10.1016/j.fusengdes.2008.12.055

476 L. Boncagni et al. / Fusion Engineering and Design 84 (2009) 475–479

Fig. 1. Broadcast Sequence and Current System.

state the broadcast screen shows a countdown status bar, which
changes color and appearance when the Start Run and the Fast
Sequence Controller (FSC) states are reached. The End Run state
has a variable duration depending on the amount of data that
the Control System is configured to elaborate and then transfer to
the archive. The broadcast represents this state likewise the Start
Sequence state.

In the idle state between two subsequent experiments (Shot Ter-
minated in Fig. 1) all the data is ready and the broadcast summarizes
in a table important measurements and parameters (shot number,
shot result, plasma density) relevant to the last five experiments.

This system presents several disadvantages. The first – and most
obvious – is that the TV sets are located in ‘fixed’ places, con-
nected through dedicated optical fiber and coaxial cables. Another
disadvantage is that the system preserves no memory of the broad-
casted live data. This is particularly annoying especially in the case
of a broadcast system restart, when the persistent variables nor-
mally displayed on the TV screens (i.e. the scientific program name,
the name of the physicist in charge) are considered as unknown
until they are transmitted again. Finally, due to the intrinsic lack
of modularity of the current broadcast system, it is quite diffi-
cult to add or modify any software functionality of the system. A
typical example is when a new data type is required to be dis-
played, and the whole broadcast data structure must be modified to
handle it.

3. Architecture

The new version of the broadcast system fixes the above men-
tioned problems using a client–server concept, aiming at enhancing
its modularity, flexibility and scalability. In fact, the new architec-
ture relies on a server which can access to a potentially unlimited
variety of data sources. Clients can select autonomously the data
needed among the information provided by the Web Services on
demand, and they will deal with the issues related to data display.

Based on these requirements, to realize the server side of the
project Web Service technology has proven to be the most con-
venient. A Web service is defined by the W3C [1–3] as being “a
software system designed to support interoperable machine-to-
machine interactions over a network”.

Normally Web Services are Web APIs that can be accessed over
a network, such as the Internet, and executed on a remote system
hosting the requested services. The main advantages in using this
technology rely on:

- Little effort in development, thanks to automatic code generation.
- Clients can be implemented in all those languages for which a

SOAP/XML library exists.
- SOAP is firewall compliant, using HTTP as transport protocol.

The server is fully developed in Java using Apache Tomcat plus
the Axis2 module as Web Services container, as shown in Fig. 2. The
Web Service objects are instantiated by the Axis2 module each time
a request coming from a client must be processed.

For the whole broadcast system a set of three Web Services is
provided, actually one for each data format:

- shot sequence status message;
- videos of plasma discharge;
- data from databases.

Each Web Service publishes at least two methods: getCurrent-
Data() and getNextData(). The first one is a nonblocking call that
returns the current data to the requesting client, the second one
because of the small rate of status change (as described in Section
2) is a blocking call that returns the fresh requested data as soon as it
is available. In any case, due to the Web Services client APIs capabil-
ities, the methods can be invoked in synchronous or asynchronous
mode.

Each Web Service instance is linked to one or more static receiver
threads (static: the same threads for each Web Service instance)
that deals with its own data source. In case of a getNextData()
invocation, the corresponding Web Service instance is queued if
the receiver is busy (i.e. waiting for fresh data). The concurrency
between the receiver and the Web Service instance is handled using
locks on shared objects and some synchronized methods or code
sections. Only when the receiver understands that the data is ready
for delivery, the locks on the shared objects are removed and con-
sequently notified to all the Web Service instances that are queued
waiting for the resource. After the delivery, the receiver will take
again the locks and the whole system returns to its initial state. A
schematic view of the Web Services definition is shown in Fig. 3.

In the next three subsections we will describe briefly the three
above mentioned services.

3.1. Message WS

The Message Web Service is in charge of one way message deliv-
ery from the FTU Control System. The messages are intercepted by
the message receiver thread. As in the current system, it acts like
a server waiting for TCP/IP communication, but during the trans-
mission of the message, a copy is stored into a database table for

Download English Version:

https://daneshyari.com/en/article/273392

Download Persian Version:

https://daneshyari.com/article/273392

Daneshyari.com

https://daneshyari.com/en/article/273392
https://daneshyari.com/article/273392
https://daneshyari.com

