
Fusion Engineering and Design 81 (2006) 1723–1727

JDAQ, the new TEXTOR data acquisition program

M. Korten, J.G. Krom ∗

Institut für Plasmaphysik1, Forschungszentrum Jülich GmbH, EURATOM Association, D-52425 Jülich, Germany

Available online 26 May 2006

Abstract

During the last years many components of the TEXTOR data management system were re-engineered. This new system
was successfully used to commission and subsequently to operate TEXTOR following the installation of the Dynamic Ergodic
Divertor. This paper gives an overview of one of the main re-engineered components: JDAQ, the Java (or Jülich) Data AcQuisition
system.

JDAQ is based on the design of, and the experiences with the previous TEXTOR data acquisition systems; it was aimed to
be an open, distributed and scalable system. It has almost completely been written in the JAVA object-oriented programming
language, reflecting many of the code patterns known from modern software engineering. JDAQ is designed as a four-tier layered
system, which can be run on a single node or distributed over a TCP/IP network.

The TEXTOR operations during the last two years showed the advantage of a highly flexible, platform independent and
modular development. The majority of our diagnostic subsystems have been moved to JDAQ and have been reliably operated in
the TEXTOR experimental campaigns.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Fusion research; Data acquisition; Java; Object-oriented; Patterns-based; Software engineering

1. Introduction

TEXTOR is the fusion research tokamak of the
Research Centre Jülich. It is operated by an inter-
national community: the Trilateral Euregio Cluster
(TEC) consisting of Forschungszentrum, Jülich (Ger-
many), FOM-Rijnhuizen (The Netherlands) and ERM-
Brussels (Belgium).

∗ Corresponding author. Tel.: +49 2461 615451;
fax: +49 2461 615452.

E-mail address: j.krom@fz-juelich.de (J.G. Krom).
1 Partner in the Trilateral Euregio Cluster (TEC).

During the late 1990s, the TEC community planned
to enhance the TEXTOR device with the dynamic
ergodic divertor (DED) [1]. This divertor was installed
during a major shutdown of TEXTOR operations in
2002 and 2003.

This shutdown period gave us also the opportunity to
upgrade the control, data acquisition and data manage-
ment systems in use around TEXTOR. These upgrades
were influenced by earlier work in the European Union
Framework programs REMOT, DYNACORE [2] and
related projects [3,4].

This paper describes the main new software devel-
opment: JDAQ: The Java coded diagnostic data acqui-
sition system.

0920-3796/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2006.04.033

mailto:j.krom@fz-juelich.de
dx.doi.org/10.1016/j.fusengdes.2006.04.033


1724 M. Korten, J.G. Krom / Fusion Engineering and Design 81 (2006) 1723–1727

2. JDAQ data acquisition

One of the major developments around TEXTOR in
the last few years is the new data acquisition system:
JDAQ, the Jülich (or Java) Data Acquisition. It replaces
the previous system which, though successful in its
design concepts, had turned out to be an increasingly
serious obstacle for further extensions. This was due
to the legacy implementation (VAX Macro Assembler,
FORTRAN) and hardware dependencies (MicroVax
Q-bus, CAMAC). Embarking from the proven design
principles of the old system, JDAQ aimed to be a dis-
tributed and scalable new design.

JDAQ has been written in the JAVA object-oriented
programming language to benefit from modern soft-
ware technologies and a rich literature of code
and design patterns. This open software architecture
enabled the support of new data acquisition hardware
and has lead to a fast replacement of the old acquisition
system.

JDAQ uses the JAVA Standard Development Kit,
which is available free of charge and makes the core of
JDAQ platform independent. It uses JAVA native inter-
facing to connect to platform specific hardware drivers
which are usually available from the data acquisition
instrumentation vendors. JDAQ is independent of any
other third-party commercial products. Beyond those
components that directly use the mentioned hardware
drivers, JDAQ can be employed on all platforms that
are supported by JAVA. It is being used mainly on PCs
with Microsoft Windows (XP, 2000 and NT), but has
been shown to work under Linux; at TEXTOR the stor-
age component routinely runs under IBM-AIX.

JDAQ is, like our previous and many comparable
systems, organized to support autonomously operating
diagnostic subsystems. These subsystems represent,
in the JDAQ case, organizational units related with
a TEXTOR diagnostic, or with a group of TEXTOR
diagnosticians. These subsystems are not, like in some
comparable acquisition systems, separate computers,
but are represented by objects in an object-oriented
program.

These subsystems can run completely independent
from each other or synchronized under control of the
central TEXTOR timing. The TEXTOR timing system
supports an interactive mode, that provides complete
local control for testing and diagnostic development,
and an automatic mode, for data taking during TEX-

TOR discharge. In this mode all subsystems make use
of the TEXTOR wide synchronized clocks and trigger
events.

2.1. JDAQ Topology

JDAQ is designed as a multi-tier, network dis-
tributed system. This topology has been depicted in
Fig. 1. The relevant tiers are:

1. DIALOG: The graphical user interface tier. These
are intuitive displays that allow for status moni-
toring, control and surveillance of the all JDAQ
subsystems as a whole, or specific selected ones
in detail. Sensitive control and parameter manipu-
lations are authentication protected.

2. DISPATCH: The diagnostic subsystem tier. JDAQs
central control of all supported subsystems. Inter-
acts with a configuration database, interactive dialog
user sessions and the device tier. Dispatch executes
individual subsystem control by delegating mod-
ule specific hardware commands to the device tier.
Depending on a pre-selected control mode, dispatch
acts either autonomously, or driven and synchro-
nized by the TEXTOR timing system.

3. DEVICE IO: The data acquisition tier. Device
servers provide the actual I/O transactions to any
supported data acquisition hardware. A device
server typically handles the hardware behind the
bus-controller of a specific type, i.e. CAMAC con-
trollers.

4. ARCHIVE: The JDAQ data storage tier: This tier
is responsible for storing and archiving all relevant
data. This data is then made accessible by the end-
users via the TEC Web-Umbrella mechanism [5].

This design allows the different JDAQ activities
to be deployed on different computers, which in turn
improves the scalability of the whole. This feature has
been used in TEXTOR operations: some subsystems
took far longer than others to complete their acquisition
cycle, with some judicious redistributing of the JDAQ
services over the available computers we managed to
significantly improve the overall performance.

2.1.1. The JDAQ DIALOG server
The user interface to JDAQ is provided through the

JDAQ dialog server, which can be run from any com-
puter with support for a JAVA virtual machine and



Download	English	Version:

https://daneshyari.com/en/article/273754

Download	Persian	Version:

https://daneshyari.com/article/273754

Daneshyari.com

https://daneshyari.com/en/article/273754
https://daneshyari.com/article/273754
https://daneshyari.com/

