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a b s t r a c t

Numerical modelling of thin structures combined with history-dependent material under large defor-
mation is challenging for the traditional methods of analysis. The material point method (MPM), in which
the continuum is represented by material points, is a LagrangianeEulerian procedure suited for granular
material and geomechanical simulations. The releasing process of geocontainers within a barge is
simulated, in which the split barge is modelled via boundary particles with prescribed angular velocity.
Various frictional contact coefficients between the barge and geotextile material are considered. More-
over, the influence of adding wrinkles to the bottom of the container that follows practice is evaluated
and the predictions are compared to that of a non-slack geotextile. The effect of soil properties on the
geotextile forces are also examined.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An important application for geosynthetic materials is the use of
Geotextile Sand Containers (GSC) for shore protection. Owing to
economical and ecological advantages over conventional materials,
the use of GSC is becoming increasingly popular for reinforcement
of existing threatened coastal barriers and structures (Oumeraci
et al., 2003). Studying the stability, interaction and failure of sand
containers has been investigated by numerous researchers
(Hornsey et al., 2011; Recio and Oumeraci, 2007). Another appli-
cation of geotextiles is the construction of a geocontainer unit,
which consists of prefabricated geotextile placed in a split barge
and filled with sand or slurry up to several hundred cubic meters.
Thereafter the container is closed by sewing and is subsequently
dumped from the scow bed into the desired position. Such units are
used for underwater structures such as breakwaters and disposal of
contaminated sludges. See, for example (Pilarczyk, 2000; TenCate,
2007) for more applications.

Numerical modelling provides a flexible tool to analyse the
physical phenomena associatedwith geocontainer applications and
to investigate the effects of the controlling parameters. Through a
better understanding of the physics, better and more economical
experiments can be developed to both validate our models and

better tailor geosynthetic products for specific applications. Nu-
merical models based on the distinct element method have been
developed to simulate the releasing and dropping process of geo-
containers (Palmerton, 2002). The coupling between the discrete
element method (DEM) and finite element method (FEM) has been
used to model the interaction of grains as well as soilegeogrid
interaction (Tran et al., 2013, 2014;Wang et al., 2014). In spite of the
capability of DEM to model the interaction of grains, it is limited to
small scale problems and the selection of model parameters is
difficult to achieve in a reliable way. As a result, continuum models
such as the FEM are usually preferred over discrete representations.
Classical finite element methods have drawbacks when large
deformation takes place. As an alternative, the Material Point
Method (MPM) provides a convenient framework for handling large
deformation. The ParticleeIneCell (PIC) method developed by
Harlow (1957) for fluid mechanics is regarded as the origin of MPM.
The method was introduced for solids by Sulsky and Schreyer
(1993) and their co-workers in New Mexico. The weak formula-
tion of the MPM is provided in terms of a finite element method-
ology by Sulsky et al. (1995). For geomechanical applications
involving geosynthetics materials, where the membrane effects are
important, the thin structures and soil material often develop large
displacements and large deformation.

York et al. (1999) introduce a membrane element to the MPM
formulation for two-dimensional problems. They modify the MPM
algorithm by considering the in-plane membrane effect of a single
layer of material points. Hamad et al. (2012) propose an alternative
formulation, in which the membrane is treated as a FEM structure
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inside the MPM framework. By taking into account FEMeMPM
coupling they apply this model to study the releasing of geo-
containers from split barges. A detailed comparison between the
two membrane approaches shows that the coupled approach more
accurately predicts stresses with coarser discretisation (Hamad
et al., 2014). Various geotechnical applications using the two
membrane formulations are given by Hamad et al. (2013).

As a continuation of studying the dropping of geocontainers
(Hamad et al., 2012, 2014), the objective of this paper is to advance
the MPM model. For this purpose, the influence of adding wrinkles
to the bottom of the container that follows practice is evaluated and
the predictions are compared to that of a non-slack geotextile. The
influence of bargeegeotextile friction coefficients and soil proper-
ties on the tensile forces along the thin membrane as well as the
deformations of the geocontainer are examined. Section 2 provides
a brief overview of the MPM formulation combined with the
discrete form. Moreover in this section, the non-zero kinematic
condition is presented where the procedure of defining prescribed
particles displacement in MPM is elaborated. An application of soil
column collapse, where excessive deformation is taking place, is
examined in this section. Section 3 is dedicated to outlining and
presenting the two approaches tomodel geotextiles inMPM, where
an evaluation of these methods is given at the end of this section.
More attention is given to the application of releasing geo-
containers from a split barge in Section 4. The effect of adding slack
to the geotextile on the tensile forces is examined. Additional cases
having various soil and frictional properties are included in this
section. Section 5 illustrates the interaction of two geocontainers by
dropping one on top of another. The development of the tensile
forces due to the dynamic installation is discussed and compared to
the final residual values. Section 6 contains the concluding remarks.

2. Brief review of the MPM algorithm

MPM is a modified finite element method, that employs two
levels of discretisation: the Lagrangian discretisation, in which a
continuum body is represented by material points (particles) that
are tracked during the computation; and a computational mesh to
solve the momentum equation. Whereas, the material points are
tied tightly to the elements for FEM, they are allowed to move in
MPM from one element to another in an Eulerian fashion such that
the state properties remain with the material points. Fig. 1 illus-
trates the two levels of discretisation. This paper follows the orig-
inal MPM framework (Sulsky and Schreyer, 1993; Sulsky et al.,
1995), in which a body is defined in terms of collocated material
points that contain the properties and state variables, such as
density, stress and strain. More recent implementations of MPM

use subdomain procedures to better capture gradients, although at
added computational expense. These extensions are not adopted
herein.

The important variables for the class of problem addressed in
this paper appear in the momentum balance

r €u ¼ LTsþ rg; (1)

and its virtual work equivalent, which is used to develop the MPM
equations that include the boundary conditions
Z
V

duTr €u dV ¼ �
Z
V

dεTs dV þ
Z
V

duTrg dV þ
Z
St

duTt dS; (2)

where s is the Cauchy stress tensor, r is the mass density, g is the
gravitational acceleration vector, ε is the strain tensor, and St de-
notes part of the surface S of volume V on which traction t is
specified. The superposed double dot above displacement u implies
a double time derivative, with L being the linear differential oper-
ator as given in the finite element literature; see, e.g. (Zienkiewicz
and Taylor, 2005). The symbol d represents a virtual quantity and
bold implies a vector or matrix. All variables are a function of po-
sition x and time t. Since we are following the motion, there is no
need to include the advection term for acceleration.

2.1. Discrete form

Following the original MPM description, a body U shown in
Fig. 1 is discretised into subdomains, where the mass of the sub-
domain is concentrated at the location xp of the material point p
such that the density is given by

rðxÞ ¼
Xnp

p¼1

mpd
�
x� xp

�
; (3)

in whichmp is the mass of the material point p, np is the number of
material points, and the Dirac delta function d is defined as

d x� xp
� � ¼

8<
:

0; xsxp
þ∞; x ¼ xp

with
Zþ∞

�∞

d x� xp
� �

dx ¼ 1; (4)

Referring to Fig.1, Eq. (3) does not apply to particles that are only
used to define the boundary G. Similar to the standard finite
element method, the value of a variable inside a computational
element depends on the nodal values and the corresponding shape
functions. For example, the displacement vector is written as

u x; tð Þ ¼ Na with du ¼ Nda; (5)

where N is a (3 � 12) matrix containing the shape functions cor-
responding to the tetrahedral grid as given in Appendix A and a
(12 � 1) contains the nodal displacements, which are a function of
time. Using these definitions and making use of Eq. (5), the dis-
cretised momentum takes the form

M €a ¼ Fext � F int ; (6)

in which M is the consistent mass matrix, €a denotes the nodal ac-
celeration vector, and Fext and Fint are the external and internal
nodal force vectors, respectively; see for example (Jassim et al.,
2013; Więckowski et al., 1999). In practice, the lumped mass ma-
trix Ml is preferred over the consistent mass matrix as it simplifies
the computations due to it being diagonal, albeit at the expense of
introducing a slight amount of numerical dissipation (Burgess et al.,Fig. 1. Continuum body (left) discretised with MPM (right).
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