Neuraxial Anesthesia for Outpatients

Elizabeth A. Alley, MD*, Michael F. Mulory, MD

KEYWORDS

- Local anesthetics Neuraxial anesthesia Spinal anesthesia Epidural anesthesia
- Ambulatory anesthesia

KEY POINTS

- Spinal anesthesia with preservative-free 2-chloroprocaine offers a favorable side-effect profile and discharge times for certain ambulatory surgery procedures lasting less than 60 minutes.
- For procedures of longer duration, epidural or combined spinal epidural anesthesia may provide longer anesthesia without prolonged recovery.
- Choosing shorter-acting agents with favorable side-effect profiles will allow for a successful anesthetic plan and timely discharge in the ambulatory setting.

INTRODUCTION

Neuraxial anesthesia can be an outstanding choice for appropriate ambulatory surgery patients undergoing procedures of 60- to 90-minute duration, such as knee arthroscopy, hernia repair, and extracorporeal shock wave lithotripsy (ESWL). Spinal anesthesia with short-acting agents has been shown to have a favorable side-effect profile and discharge times compared with general anesthesia in the outpatient setting (Table 1). Neuraxial anesthetics are associated with reduced pain scores and a decreased need for postanesthesia care unit (PACU) analgesics (Table 2).

SELECTION OF AGENTS

Lidocaine has been used for short spinal anesthetics for decades. ⁶ Although lidocaine provides reliable results for outpatient anesthesia (**Table 3**), ^{7,8} its use has decreased in the outpatient setting because of transient neurologic symptoms (TNS). ⁹ Alternative agents have been studied. ¹⁰

Bupivacaine has been used as one alternative to lidocaine for some outpatient procedures. Bupivacaine in as low of a dose as 4 mg intrathecally provides an average

No financial support or relationships were involved in the production of this article. Department of Anesthesia, Virginia Mason Medical Center, B2-AN, 1100 Ninth Avenue, Post Box 900, Seattle, WA 98101, USA

* Corresponding author.

E-mail address: Elizabeth.Alley@vmmc.org

Anesthesiology Clin 32 (2014) 357–369 http://dx.doi.org/10.1016/j.anclin.2014.02.007

Table 1
Anesthetic-related side effects and patient satisfaction in the ilioinguinal hypogastric nerve
block-monitored anesthesia care, general anesthesia, or spinal anesthesia for inguinal
herniorrhaphy procedures

	IHNB-MAC (Group 1)	General Anesthesia (Group 2)	Spinal Anesthesia (Group 3)
Postoperative side effects (n [%])			
Backache	0	0	6 (24) ^{ab}
Drowsiness	4 (14)	15 (54) ^a	3 (12) ^b
Headache	2 (7)	4 (14)	3 (12)
Knee weakness	3 (11)	1 (4)	3 (12)
Muscle aches	0	2 (7)	0
Nausea and/or vomiting	2 (7)	17 (61) ^a	3 (12) ^b
Pruritus	0	0	6 (24) ^{ab}
Sore throat	0	6 (22) ^a	2 (8) ^b
Urine retention	0	0	5 (20) ^{ab}
Maximum nausea VAS (mm)	1 ± 5	27 ± 27^{a}	4 ± 1 ^b
Maximum pain VAS (mm)	15 ± 14	$39\pm28^{\text{a}}$	$34 \pm 32^{\mathbf{b}}$
Oral analgesia after discharge (n [%])	16 (57)	18 (64)	17 (68)
Satisfaction with anesthetic technique			
Poor	0	0	0
Good	7 (25)	18 (64) ^a	9 (36)
Excellent	21 (75)	10 (36) ^a	16 (64)

Abbreviations: IHNB-MAC, ilioinguinal hypogastric nerve block–monitored anesthesia care; n, numbers; VAS, visual analog scale.

From Song D, Greilich N, White P, et al. Recovery profiles and costs of anesthesia for outpatient unilateral inquinal herniorrhaphy. Anesth Analg 2000;91(4):879; with permission.

PACU discharge time of 65 to 98 minutes (**Fig. 1**), which is reasonable for an outpatient setting but is associated with 4% failure rates. ¹¹ Other researchers have studied patients receiving 5.0 mg and 7.5 mg bupivacaine in the lateral position as to provide a unilateral block. ¹² Researchers have reported a wide variation of recovery profiles for bupivacaine spinals (greater than 300 minutes), which makes bupivacaine not suitable for outpatient anesthesia (**Fig. 2**). ¹³ The failure rate of a low dose combined with the erratic discharge of higher doses makes bupivacaine a less desirable choice for outpatients.

Preservative-free 2-chloroprocaine (2-CPC) spinal anesthesia has been increasing in use over the past decade despite concern about possible neurotoxicity based on case reports with previous preservative-containing preparations. Preservative-free 2-CPC has now been approved for use as an intrathecal anesthetic in Europe. Forty milligrams of 2-CPC has shown a reliable anesthetic time of 60 minutes, with 120 minutes to discharge ready with a very narrow range of variability. A review of more than 4000 patients at one institution revealed no signs of nerve damage and a rare incidence of TNS (Fig. 3). In this review, patients receiving 2-CPC were ready for discharge close to an hour before patients receiving lidocaine 60 mg (171 vs 224).

^a P<.05 versus IHNB-MAC group.

^b P<.05 versus general anesthesia group.

Download English Version:

https://daneshyari.com/en/article/2744418

Download Persian Version:

https://daneshyari.com/article/2744418

<u>Daneshyari.com</u>