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a b s t r a c t

The square root relationship of gas release in the early stage of desorption is widely used to provide a
simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relation-
ship was theoretically derived, what are the assumptions and applicable conditions and how large the
error will be. In this paper, the analytical solutions of gas concentration and fractional gas loss for the dif-
fusion of gas in a spherical coal sample were given with detailed mathematical derivations based on the
diffusion equation. The analytical solutions were approximated in case of small values of time and the
error analyses associated with the approximation were also undertaken. The results indicate that the
square root relationship of gas release is the first term of the approximation, and care must be taken
in using the square root relationship as a significant error might be introduced with increase in the lost
time and decrease in effective diameter of a spherical coal sample.

� 2014 Published by Elsevier B.V. on behalf of China University of Mining & Technology.

1. Introduction

Gas content of coal is widely used in gas emission estimation,
and gas outburst proneness assessment in underground coal min-
ing [1]. The commonly used method for the estimation of the gas
content is the direct desorption method. This method is based on
observations of gas release from newly obtained samples, and typ-
ically involves extracting a coal sample, enclosing it in a sealed
container and measuring the volume of gas released. With the
direct method, the total gas content of a coal sample is made of
three parts: lost gas, measurable gas, and residual gas [2–5]. The
lost gas (Q1) is the gas desorbed from the sample before it is placed
in the canister. The measurable gas (Q2) is the gas desorbed during
transport and in the laboratory. The residual gas (Q3) is the gas still
contained in coal at one atmospheric pressure. While Q2 and Q3
can be directly measured, Q1 has to be estimated.

The ‘‘lost gas’’ estimation method was firstly described by Ber-
tard et al. [6]. It was stated in the paper that early in the desorption
process the volume of gas released from coal was proportional to
the square root of time. However no details were given as how
the relationship was theoretically derived except mentioning that
it was based on kinetics of gas desorption from coal. Since then this
square root relationship has been widely used as a standard lost
gas estimation method. The relationship has been found to be

significantly dependent on a number of factors such as sample
shape, retrieval time, and physical character of the sample [7,8].
Crank did present in his book the analytical solutions of diffusion
from cylindrical and spherical samples, but still no mathematical
derivations were given [9]. This raises the questions: how the rela-
tionship was theoretically derived? What are the assumptions and
applicable conditions and how large the error will be? To answer
some of the questions and improve the accuracy of estimation, this
paper gives detailed derivations of a general mathematical solution
for the diffusion of gas in a spherical coal sample and an approxi-
mation solution. The detailed derivations of a general mathemati-
cal solution for the diffusion of gas in a cylindrical coal sample and
an approximation solution have been published by the same group
of authors of this paper [10]. These mathematical derivations also
have particular relevance in determining the sorption time and dif-
fusion coefficient in our numerical models of coal and gas out-
bursts [11,12].

2. Diffusion equation and the initial and boundary conditions

Gas release from coal is considered to be the process of diffusion
in the coal matrix and desorption at surface. The diffusion through
the matrix is assumed to be concentration gradient-driven and
usually modeled using Fick’s Second Law of Diffusion [13]. For a
spherical sample with constant diffusion coefficient (D), the gas
concentration (C) is dependent on the radial coordinate of the
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sphere (r) only, then the diffusion equation derived from Fick’s Sec-
ond Law of Diffusion is given as

@C
@t
¼ D

@2C
@r2 þ

2
r
@C
@r

 !
; 0 6 r < a; t > 0 ð1Þ

The initial and boundary conditions can be expressed as:

C ¼ C0; t ¼ 0; 0 6 r < a ð2Þ
C ¼ C1; r ¼ a; t > 0 ð3Þ
C ¼ finite; r ¼ 0; t > 0 ð4Þ

where a is the radius of the sphere; C0 the initial uniform concentra-
tion; and C1 the constant concentration at the surface of the sphere.

Let u = Cr, Eqs. (1)–(4) become

@u
@t
¼ D

@2u
@r2 ð5Þ

u ¼ rC0; t ¼ 0; 0 < r < a ð6Þ
u ¼ aC1; r ¼ a ð7Þ
u ¼ 0; r ¼ 0 ð8Þ

Eqs. (5)–(8) can be analytically solved with either the method of
separation of variables or the Laplace transform method. The latter
approach is adopted in this paper because it is also used to derive
approximations (Section 5 of this paper) of the general solutions.

3. General solution

3.1. Solution of gas concentration

Application of the Laplace transform to Eq. (5) leads to the
subsidiary equation

@2�u
@r2 � q2�u ¼ � rC0

D
; 0 6 r < a ð9Þ

With the conditions

�u ¼ aC1

p
; r ¼ a ð10Þ

�u ¼ 0; r ¼ 0 ð11Þ

where �u ¼
R1

0 e�ptudt is the Laplace transform of u, q2 = p/D, p is the
Laplace variable.

The solution of Eqs. (9)–(11) is given as

�u ¼ aðC1 � C0Þ eqr � e�qrð Þ
p eqa � e�qað Þ þ rC0

p

¼ aðC1 � C0Þ sinh ðqrÞ=q
p sinh ðqaÞ=q

þ rC0

p
ð12Þ

By applying the method Laplace transform of partial function, the
inversion of the Laplace transform of Eq. (12) is obtained as

u ¼ r C1 þ
2aðC1 � C0Þ

p
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We then have
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or
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3.2. Solution of the fractional loss

Let the total gas volume in the sample at time t be Q, we then
have

Q ¼
Z a

0
C � 4pr2dr

¼ 4pa3

3
C1 �

8a3ðC1 � C0Þ
p

X1
n¼1

1
n2 exp �Dn2p2t

a2

 !

At t = 0, the initial total concentration is Q0 ¼ 4p a3

3 C0, the total
desorbed gas Mt until time t is

Mt ¼ Q 0 � Q

¼ 4pa3

3
ðC0 � C1Þ þ
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p
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At t =1, we have M1 as follows

M1 ¼ lim
t!1

Mt ¼
4pa3

3
ðC0 � C1Þ ð16Þ

Thus we obtain the fractional loss as

Mt

M1
¼ 1� 6
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 !
ð17Þ

4. Convergence analysis

Although Eq. (17) is an analytical solution, it contains an infinite
number of exponential terms. In practical applications, it is neces-
sary to cut off to a finite number of terms. To do this, the conver-
gence of Eq. (17) needs to be studied. If we set the cut-off error
to be 10�2 �

ffiffiffiffiffiffi
Dt
p

=a the minimum number of terms required to
obtain this precision can be calculated. Fig. 1 shows the variation
of this minimum number of terms with Dt/a2. It can be seen that
with the decrease of Dt/a2 value, the minimum number of terms
required to obtain this precision increases dramatically. Therefore,
Eq. (17) converges rapidly for large values of time, for short times
(t close to zero), the number of terms required to calculate the frac-
tional loss accurately increases rapidly. This is the reason why the
approximation of Eq. (22) (in Section 5 of this paper) is generally
used instead in practical estimation of the lost gas in the earlier
stage of desorption.

5. Approximations of the general solutions

In the case of small values of time the general solutions Eqs.
(15) and (17) can be approximated as follows.
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Fig. 1. Minimum number of terms required to make Eq. (17) converge versus Dt/a2.
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