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a b s t r a c t

Fully mechanized coal mining with backfilling (FMCMB) has become a major solution of ‘‘green mining’’.
The mechanical properties of backfill materials are key factors of ground control in FMCMB face. To study
the strength behaviors of the solid backfill materials, we developed a method of generating random
gravel model by using computational geometry algorithms, then coded the generating method into a pro-
gram with MATLAB software, and implemented several numerical biaxial tests under different confining
stresses by using a generated random gravel model and the Particle Flow Code PFC2d. Peak deviatoric
stress, post-peak softening, initial contraction and dilation and the relations between them and confining
stress can be observed. And the initial elastic modulus of the samples, Poisson’s ratio, frictional angle and
cohesion can be derived from the numerical biaxial test results. The results indicate a good feasibility
study of mechanical properties of the solid backfill materials by random gravel model and particle flow
based numerical biaxial test.

� 2013 Published by Elsevier B.V. on behalf of China University of Mining & Technology.

1. Introduction

Fully mechanized coal mining with backfilling (FMCMB) is a
new mining technology that backfills the gob with solid waste
while coal is exploited effectively [1–2]. FMCMB has become a ma-
jor solution of ‘‘green mining’’ as it can mitigate the ground move-
ment, decrease surface subsidence above the panels and dispose
solid waste [3–10].

The mechanical properties of the backfill materials are impor-
tant factors for control of ground movement in a FMCMB face
[6,7,9,11]. The compaction and broken expand characteristics of
backfill materials or rockfill have been studied with compaction
tests by several scholars, however, the ‘‘modulus’’ derived from
compaction tests mentioned above is not a constant and increases
with the axial compressive stress as the lateral displacement is
fixed, and the strength of materials could not be derived from
those tests because macro shearing failure cannot occur with a
fixed lateral displacement [9,12–14]. According to our knowledge,
the researches on strength of solid backfill materials and their con-
stitutive behaviors are not reported widely.

In fact, the solid backfill materials such as gangue, gangue-fly
ash mixture and construction waste, etc., can be envisioned as a
kind of rockfill or soil–rock mixture if a proper rock/soil threshold
is considered [15]. The strength of rockfill or soil–rock mixture is

currently studied by large scaled triaxial tests or direct shear tests
and numerical simulation based on Finite Element Method (FEM)
or Particle Flow Code (PFC) [15–21]. In the numerical simulation
mentioned above, the gravel geometries are represented by ran-
dom polygons in FEM while the circular particles and particle clus-
ters with regular shapes in PFC. The peak deviatoric stress of
rockfills and post-peak behavior in a biaxial or triaxial tests are dif-
ficult to simulate with FEM, and the circular particles or regular
shaped particle clusters in PFC cannot properly be represented by
the gravel geometry.

In this paper, a method of generating the planar random gravel
model for solid backfill materials is developed and several numer-
ical biaxial tests are carried out using a random gravel model and
Particle Flow Code PFC2d.

2. Computational geometry algorithms of the random gravel
model

The solid backfill materials may contain fine-grained fly ash or
soil, rock blocks and coarse-grained rock blocks. Only the coarse-
grained rock blocks that control the global mechanical properties
of the whole model are treated as gravels, while the fine-grained
part is regarded as ‘‘soil’’, and the gravels are represented by a ser-
ies of convex polygons in a planar view.

To generate the random convex polygons and pack them into a
model plane by a computer program, several computational
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geometry algorithms relating to the geometrical properties of con-
vex polygons are needed.

2.1. Cross product

Consider two vectors sharing the same start point as shown in
Fig. 1 [22].

The cross product of the two vectors is defined as the determi-
nant matrix:

SðA;B;CÞ ¼
xA yA 1
xB yB 1
xC yC 1
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ð1Þ

If S(A, B, C) > 0, point C is at the left side of AB; if S(A, B, C) < 0, point C
is on the right side of AB and if S(A, B, C) = 0, points A, B and C are
collinear. This property of cross product plays a very important role
in the algorithms below.

2.2. Intersect of two line segments

If two line segments AB and CD are defined by their ending
points, the procedures of determining whether they intersect are
shown in Fig. 2.

(1) If the two rectangles in Fig. 2a intersect, then line segments
AB and CD may intersect, or else AB and CD cannot intersect
at all, this test is called ‘‘fast exclude’’;

(2) If cross products defined by Eq. (1) yield to
SðA;C;BÞ � SðA;D;BÞ 6 0 and SðC;A;DÞ � SðC;B;DÞ 6 0, then
line segments AB and CD straddles each other as Fig. 2b
shows.

Line segments AB and CD intersect only if both the first exclude
and straddling tests are passed.

2.3. Convex checking of a polygon

The convex property of a polygon can be checked by the con-
ception of convex polygon as shown in Fig. 3.The polygon is convex
if Eq. (2) is satisfied:

SðAj;Ajþ1;AiÞ > 0; j ¼ 1;2; . . . ; n; i–j; jþ 1 ð2Þ

where n is the total number of vertices.

2.4. Point and convex polygon

Fig. 4 demonstrates that the method of judging a point is in or
out a convex polygon.Define areas as Si ¼ SðB;Ai;Aiþ1Þ; relation of
point B and convex polygon A is determined as follows:

(1) if any Si < 0, then point B is out of the convex polygonal
region;

(2) if any Si = 0, then point B is on a edge of the convex polygonal
region and

(3) if Si > 0, i = 1, 2,. . ., n, then point B is in the convex polygonal
region.

2.5. Shortest distance between two convex polygons

To determine the shortest distance between two convex poly-
gons A and B (provided that A and B do not intersect each other),
the distance from a vertex of one convex polygon to another con-
vex polygon should firstly be defined, and this is similar to the dis-
tance between a point and a triangle [23].

The definition of distance from a point to a convex polygon is
shown in Fig. 5, where Bi is a vertex of convex polygon B, and An

the vertex of convex polygon A which is nearest to Bi.
The distance from convex polygon B to A is defined as:

distðB;AÞ ¼minðdistðBi;AÞÞ ð3Þ
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Fig. 1. Two vectors sharing the same start point.
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Fig. 2. Intersect of two line segments.
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Fig. 4. Judging a point is in or out of a convex polygon.
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Fig. 5. Distance from a vertex of one convex polygon to another convex polygon.
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