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a b s t r a c t

The heat flow generated from the infinite rock mass surrounding the underground tunnels is a major
cause for the increasing cooling demands in deep mine tunnels. Insulation layers with lower thermal con-
ductivities on tunnel walls and roof ceilings are believed to supply a thermo-barrier for heat abatement.
However, it is found that no systematic theoretical investigations were made to predict and confirm the
effectiveness of underground thermal insulation. Specifically, investigations on the underground insula-
tion problems involving heat flows through the semi-infinite hot rock mass and insulation layer were not
sufficient. Thus, in this paper, the thermal characteristics, accompanied with heat flow through the
semi-infinite rock mass and the insulation layer, were modeled by both analytical and numerical meth-
ods with focus on underground mine tunnels. The close agreements between models have indicated that
the thermal insulation applied on tunnel surfaces is able to provide promising heat abatement effects.

� 2016 Published by Elsevier B.V. on behalf of China University of Mining & Technology.

1. Introduction

Nowadays, underground mines are going increasingly deeper to
keep up with the larger demand for minerals. The geothermal heat
emanated from the rock mass rises significantly with greater
mining depth [1,2]. Also, geothermal heat is considered to be the
primary contributor [3,4] of total heat loads in deep mines. There-
fore, requirements for ventilation and mine-cooling systems also
go up proportionately, which makes substantial costs of the oper-
ational and cooling system. One possible way of reducing this heat
load is to use appropriate materials to insulate the rock surface of
mine openings. The insulation layer functions as a thermo-barrier
to abate the heat flow from the rock mass to the atmosphere inside
the mine.

In underground mines, heat flows radially and transiently from
the infinite rock mass region into cylindrical mine tunnels and
shafts which have the internal boundary. As shown in Fig. 1a, rock
temperature profile experiences a drop near the tunnel surface
while the virgin rock temperature (Tv) far away from the tunnel
maintains constant. One of the difficulties in applying theoretical
and empirical models is the determination of the outer boundary
in the infinite rock mass region. The application of insulation
makes the model even more complicated. To simplify the analysis,
the thermal flow problem in cylindrical systems is considered as a

one-dimensional transient heat conduction problem in a two-layer
slab with infinite-long rock mass. Even with this assumption, the
analytical solutions of simplified transient conduction in compos-
ite slabs are found to be too sophisticated to solve, in particular
with the solutions relating to eigenvalues [5–8].

Some theoretical attempts have been made to address the prin-
ciple of using thermal insulation in underground mines, but usu-
ally only one single model was used to explain the effect of
underground thermal insulation in each of these attempts. Thus,
so far none of these previous attempts has generated a systematic
and comprehensive investigation. For instance, Bottomley [9] used
an equivalent surface heat transfer coefficient to predict thermal
flow effects. This method assumed that thermal capacity of insula-
tion layer could be neglected. However, no proof was performed to
show the reliability of this assumption. Ashworth [10] established
and solved an analytical conduction model only for the steady-
state heat flow, which cannot represent the transient phenomenon
in reality. Furthermore, the definition of the outer boundary may
strongly influence the modeling result. For example, Chellam [11]
simulated the thermal insulation in underground openings assum-
ing a 50 m outer boundary. On the other hand, Rao et al. [12]
assumed a 32 m outer boundary. In all such cases, the boundary
dimensions were arbitrary without further justifications. There-
fore, existing reports have not established a solid theoretical foun-
dation to predict the effectiveness of underground thermal
insulation, in particular, the heat flow abatement percentage after
the application of insulation layer on tunnel surface. In this study,
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analytical solutions are discussed and compared to predict the
effectiveness of underground insulation. In addition, the finite ele-
ment method (FEM) software ABAQUS� was chosen to establish
the numerical models. Rather than ABAQUS�, other FEM software
can also be utilized in the thermal analysis. The FEM is currently
the mainstream numerical tool in rock engineering, because of
its benefits and maturity in processing the non-linearity and
non-homogeneity of rock mass, the complexity of opening geome-
try, rock/structure interaction and the tunneling method [13–15].

The aim of this study is to conduct systematic theoretical inves-
tigations through the comparisons of various analytical and
numerical methods to predict the effectiveness of underground
thermal insulation.

2. One-dimensional slab model

The one dimensional slab model [16] describes heat conduction
through isotropic solid materials such as rock mass and shotcrete.
The fundamental governing equation is given below:
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a
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As shown in Fig. 1b, the right side of the boundary (outer
boundary) in the rock mass is defined as infinite. Before ventilation
and cooling, the initial temperature (T0) of the whole model is the
same as the virgin rock temperature (TV), which is the temperature

of the rock mass at certain depth before excavations. After cooling,
the left boundary of rock mass (tunnel surface) is cooled by the air
flow with air temperature (Ta), thus the heat flows from the high
temperature rock mass toward the tunnel, developing into two dif-
ferent zones, namely, the influenced zone and the virgin zone. The
influenced zone is the area affected by the cooling process,
whereas the virgin zone is the area where the temperature is kept
constantly at the virgin rock temperature (TV). The distance
between the tunnel surface to the interface of two zones is called
penetration depth (Dp). These one-dimensional models are impor-
tant to understand the heat transfer in the rock mass and the
applied thermal insulation. The description of these models is
given in Table 1, in which the model names are defined in the
following sections.

2.1. Heat flow through one-dimensional slab model with a semi-
infinite boundary

2.1.1. Analytical models without insulation
For the model without insulation, the rock–air interface (tunnel

wall surface) experiences three heat transfer processes at the same
time, namely, (i) conduction, (ii) convection and (iii) radiation. The
Dirichlet boundary condition [17] is based on the assumption that
the heat transfer coefficient is large enough to be considered as
infinity, thus the temperature at the rock–air interface is main-
tained at the air temperature (Ta). Whereas, the Neumann bound-
ary condition [17] is the more realistic case, solutions of this

Nomenclature

T temperature (K)
T0 initial temperature (K)
TV virgin rock temperature (K)
TR reference temperature (K)
Ta air temperature (K)
Ts tunnel surface temperature (K)
Tin interface temperature (K)
x space coordinate (m)
r distance with respect to axis of cylindrical opening (m)
ro cylindrical opening radius after insulation (m)
rin cylindrical opening radius before insulation (m)
d thickness of the insulation layer (m)
L outer boundary length (m)
t time (s)
s ending time (s)
k, k1, k2 thermal conductivity (W/(m K))

Cp specific heat capacity (J/(kg K))
a, a1, a2 thermal diffusivity (m2/s)
k dimensionless parameter a2/a1
h heat transfer coefficient (W/(m2 K))
heff equivalent overall heat transfer coefficient (W/(m2 K))
# dimensionless temperature: # ¼ ðT � TV Þ=ðTa � TV Þ
n dimensionless length: n = x/d
Fo dimensionless time, known as Fourier number, Fo = (at)/d2

Bi dimensionless heat transfer coefficient, known as Biot
number, Bi = (hd)/k

qs surface heat flux (W/m2)
Qs total accumulated heat flow through surface (J/m2)
�qs average surface heat flux (W/m2)
b eigenvalues
p a number in the integral of Laplace transformation
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Fig. 1. Schematic of underground temperature distribution.

Table 1
Models descriptions.

Model Method Wall
surface BC

Outer BC
scale

Layers Thermal
insulation

Slab A Analytical Dirichlet Semi-infinite 1 No
B Analytical Dirichlet Semi-infinite 2 Yes
C Analytical Neumann Semi-infinite 1 No
D Analytical Neumann Semi-infinite 2 Yes
E Analytical Dirichlet Finite length 1 No
F Analytical Dirichlet Finite length 2 Yes
G Numerical Dirichlet Finite length 1 No
H Numerical Dirichlet Finite length 2 Yes
I Numerical Neumann Finite length 1 No
J Numerical Neumann Finite length 2 Yes
K Empirical Neumann Semi-infinite 2 Yes

Cylinder M Analytical Neumann Semi-infinite 1 No

Note: BC means boundary condition.
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