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a b s t r a c t

One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It
directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling
and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF)
show potentials for modeling the behavior of complex nonlinear processes such as those involved in frag-
mentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of
sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (K80) of Golgohar
iron ore mine of Sirjan, Iran. Comparing the results of ANFIS and RBF models shows that although the sta-
tistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler
because the ANFIS model is constructed using only two input parameters while seven input parameters
used for construction of the RBF model.

� 2012 Published by Elsevier B.V. on behalf of China University of Mining & Technology.

1. Introduction

Blasting remains the cheapest method of hard rock fragmenta-
tion. The process of rock breakage by blasting in open pit mines is a
complex phenomenon which is controlled by many variables and
parameters. Considering all these parameters in a single analysis
is not possible at the present time especially when some of them
are not clearly understood yet and the effects of others are difficult
to quantify [1]. However, it is necessary to have an accurate means
of measuring the sizing of rock fragmentation in the muck pile for
validation of blasting-pattern design processes. Mackenzie deter-
mined the cost curves based on the mean fragmentation size. He
showed that loading, hauling and crushing costs decreased with
increasing rock fragmentation [2].

The numerical prediction of rock fragmentation on large scale
works is quite difficult and ineffective and cannot be applied be-
cause of the technical and economical reasons. It is also difficult
to isolate the influence of individual variables on the fragmentation
parameters from data obtained from field tests because of the
diversity of the experimental conditions [3]. Since such a relation-
ship involves a complex multi-variable system, it cannot be ex-
pressed in a straightforward manner by simple regression analyses.

On the other hand, fuzzy logic is a technique that defines and
generates responses based on ambiguous, imprecise and compli-
cated information. Fuzzy systems have attracted attention in

various fields such as decision-making, pattern recognition and
data analysis [4–10]. The adaptive neuro-fuzzy inference system
(ANFIS) is a fuzzy inference system implemented within the archi-
tecture and learning procedure of adaptive networks like a multi-
layer neural network (ANN). The adaptive network simulates a
fuzzy inference system represented by the fuzzy if–then rules.
The hybrid network of ANFIS system is functionally equivalent to
Sugeno’s inference mechanism [8]. As the fuzzy models can work
with complicated and ill-defined systems in a flexible and consis-
tent way, an increase in their applications to solve various prob-
lems in the field of mining and geomechanics has been reported
[11–13].

In this paper, the ANFIS method was used to simulate the re-
sults of the sizing of fragmentation due to bench blasting. A model
was obtained based on the initial known input parameters to
determine the sizing of fragmentation of rocks. The achieved ANFIS
model, was then compared with radial bases function (RBF) neural
network based model. The objective of present investigation was to
predict K80 of the rock mass which can be used in future blast
designs.

2. Theoretical routines

2.1. Adaptive neuro-fuzzy inference system

Among various fuzzy inference systems (FIS), Takagi-Sugeno (TS)
system has been successfully applied for fuzzy modeling [14,15]. An
ANFIS system can be considered to be an implementation of a TS

2095-2686/$ - see front matter � 2012 Published by Elsevier B.V. on behalf of China University of Mining & Technology.
http://dx.doi.org/10.1016/j.ijmst.2012.06.001

⇑ Corresponding author. Tel.: +98 851 2228093.
E-mail address: alireza.karamii@gmail.com (A. Karami).

International Journal of Mining Science and Technology 22 (2012) 459–463

Contents lists available at SciVerse ScienceDirect

International Journal of Mining Science and Technology

journal homepage: www.elsevier .com/locate / i jmst

http://dx.doi.org/10.1016/j.ijmst.2012.06.001
mailto:alireza.karamii@gmail.com
http://dx.doi.org/10.1016/j.ijmst.2012.06.001
http://www.sciencedirect.com/science/journal/20952686
http://www.elsevier.com/locate/ijmst


system in neural-network architecture. In the following, we briefly
explain an ANFIS system by using a model with two inputs as an
example [16] (Fig. 1). To construct the ANFIS model, five layers are
used, as shown in Fig. 1. Each layer has some nodes described by a
node function. The circles in the network represent nodes with no
variable parameters, while the squares show nodes with adaptive
parameters to be determined by network during training.

The nodes in the first layer represent the fuzzy sets in the fuzzy
rules. It has parameters that control the shape and the location of
the center of each fuzzy set which are called premise parameters.
In the second layer, every node computes the product of its inputs.
In Layer 3, normalization of the firing strength of the rules occurs
by calculating the ratio of the ith rule’s firing strength to the sum
of all rules firing strengths. Nodes in forth layer are adaptive,
where each node function represents a first-order model with con-
sequent parameters. Layer 5 is called the output layer where each
node is fixed. It computes the overall output as the summation of
all the inputs from the previous layer. Optimizing the values of the
adaptive parameters is the most important step for the perfor-
mance of the adaptive system. Specially, the supposed parameters
in Layer 1 and the consequent parameters in Layer 4 need to be
determined. Jang proposed a hybrid-learning algorithm for deter-
mining the parameters of an ANFIS model [17]. A hybrid learning
algorithm uses the gradient descent and least-square techniques
for optimizing the network parameters. The least-squares estima-
tion can be used to determine consequent parameters, assuming
that the Layer 1 parameters are fixed. Then, the Layer 4 parameters
can be fixed, and a back propagation approach is used to fit the pre-
mise parameters in Layer 1. Iterating between the Layer 1 param-
eters and the Layer 4 parameters optimization, the optimal values
for all free parameters are computed.

2.2. Radial basis function method

The radial basis function (RBF) method is one of the most pop-
ular artificial neural networks. The RBF network consists of two
layers: a hidden radial basis layer which uses Gaussian function
as activation function and an output linear layer [18]. Each node
of the hidden layer has a parameter vector called center. This cen-
ter is used to compare with the network input vector to produce a
radically symmetrical response. Response of the hidden layer are
scaled by the connection weights of the output layer and then
combined to produce the network output. The presupposition of
jth hidden node to input data vector xi is given by Eq. (1):

uij ¼ expð�ajjxi � cijj2Þ ð1Þ

where cj is an M-dimensional center; and a a positive constant
which determines the width of the symmetrical response of the
hidden node. The network input is the vector distance between
its weight vector and the input vector. The network output is de-
fined as Eq. (2):

c
_
¼
Xk

j¼1

uijhj ð2Þ

where hj are the network connection weights; and k the number of
hidden nodes. The output of RBF neural network is defined as the
linear combination of radial basis function layer [19].

2.3. Performance measurement

One of the most common methods for validation and consis-
tency assessment of a model is measurement of the root mean
square error (RMSE) which is a degree of distribution of the data.
The RMSE can be calculated by Eq. (3) and relative error eY is also
calculated by Eq. (4).

RMSE ¼
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where N denotes the total number of objects in the entire test-
ing set; ypred

i the predicted output for ith pattern data; and yobs
i is its

experimental output data.
The predictive ability of the models was also revealed by predic-

tive Q2
LOO and Q 2

F3
for internal validation method (Leave one out

cross validation) and external validation (randomized method)
respectively. Q2

F3
is suggested by Consonni et al. as a new formula

for calculating the predictive squared correlation coefficients
which is based on the mean squares of the training set in order
to be independent of external test objects distribution [20]. The
Q2

LOO and Q 2
F3

value should be at least 0.3–0.4 in order to assess that
the model has statistically significant prediction ability. In this
study, the Q 2

LOO value is calculated by Eq. (5).
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where N is the total number of objects in the testing set; yi
pred the

predicted output for ith pattern test data, yi
obs its experimental out-

put data; and yi
mean the average value for experimental output data.

The Q2
F3

value also calculated by Eq. (6).
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ð6Þ

where the summation in the numerator runs over the external test
set while in the denominator over the training set; the number Ntrn

of training set objects and the number Ntst of external objects are
usually different.

3. Model construction and evaluation

3.1. Case study

The study was conducted at Golgohar iron ore mine in Sirjan,
south-west of Kerman, Iran. It is one of the biggest iron ore produc-
ing company that a total reservoir of 250 million tons with an aver-
age grade of 56% iron is estimated. The iron ore field has density
4.1–4.3 (ton/m3).

The type of over burden rocks in this area is mostly medium to
coarse-grained sandstone and the blast hole diameter is 97=8 in.
(251 mm). Blasting patterns are 5.0 m � 6.0 m and 5.5 m � 7.5 m
and depth of the blast hole is 17 m (with the bench height of
15 m). Anfo for dry condition and Slurry and Emulan for wet con-
dition are being used to supply a production of over 20,000 tons/
day. The size of outfall entrance gyratory crusher is 100 cm and
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Fig. 1. ANFIS architecture.
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