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a  b  s  t  r  a  c  t

Dynamic  optimization  is a very  important  way  to increase  the  productivity  or profitability  of  biochemical
processes.  As  an efficient  approach  for  solving  these  biochemical  dynamic  optimization  problems,  control
vector  parameterization  encounters  the  difficulty  of  selecting  an  optimal  discretization  level  which  bal-
ances the computational  cost  with  the desired  solution  quality  to obtain high  accuracy  solution.  To tackle
this  issue,  a new  slope  analysis  is  proposed  to  analyze  the  control  variables  and  discretization  time  grid,
results  find  that  low  slope  time  grid  nodes  have  less  effect  on  the  improvement  of  performance  index
and  can  be  regarded  as  unnecessary  nodes,  while  high  ones  are  important  time  points.  Based  on  this,  a
novel  non-uniform  adaptive  grid  refinement  control  parameterization  approach  is  therefore  presented,
where  the  slope  analysis  is  applied  to  refine  or to coarsen  the  time  grid  so  as  to obtain  a  suitable  dis-
cretization  level  with  a small  number  of  control  intervals.  By  application  in  three  well-known  biochemical
optimization  problems,  results  show  that  the proposed  method  is  able to achieve  similar  or  even better
performance  indexes  with  small  numbers  of  control  intervals  and  lower  computational  costs.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Many biochemical processes are naturally dynamic systems [1],
which can be described by complex nonlinear differential equa-
tions. In recent years, plenty of methods have been proposed to
increase the productivity or profitability of these processes, where
one of the most important ways is the model-based dynamic opti-
mization. Many efforts have been devoted to obtain high quality
optimal operating policies so as to get the best performance index
[2–7].

Generally, dynamic optimization methods can be classified in
three main groups: iterative dynamic programming (IDP), indirect
and direct methods. Iterative dynamic programming, which applies
the Bellman optimality conditions to obtain high precision solu-
tions, is firstly presented by Luus [8] and has been used by several
authors for the optimization of industrial processes [9,10]. How-
ever, Vassiliadis et al. [11] pointed out that IDP method would be
computationally very costly. Indirect methods, inspired by the prin-
ciples of variational calculus, are based on Pontryagin’s Minimum
Principle and have been used in biochemical reactors. Alternatively,
direct methods transform the original problem into a nonlinear
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programming (NLP) problem by two strategies: complete param-
eterization (CP) [12] and control vector parameterization (CVP)
[13,14], then the results can be obtained by solving the NLP prob-
lem. Furthermore, another existing direct discretization method is
the parametrization approach [15], in which analytical expressions
obtained via Pontryiagin’s Minimum Principle are used in a direct
approach. Once the analytical expressions for the set of optimal
arcs are derived and the optimal sequence of arcs is found, only
the switching points between the different arcs have to be opti-
mized. As such this approach yields the most appropriate/adapted
parametrization and the best cost value. The advantage of this
approach is that it is numerically well conditioned and the param-
eterization is exact and in most cases parsimonious. This approach
has been widely used in biochemical processes, typical application
can be found in [16]. Also results comparing this parametriza-
tion to an adaptive scheme have been reported in for instance
[17]. Meanwhile, stochastic approaches also apply the evolutionary
algorithms (EA) to solve dynamical system optimization in recent
years, the detailed work can be seen in the survey of Conway in [18].
Compared with indirect methods and stochastic algorithms, direct
methods are less costly and there is no requirement to set up and
solve a multipoint boundary value problem associated with Pon-
tryagin’s Maxium Principle [19]. Consequently, many literatures
focus on the improvement of direct methods [1,2,5,11,20–23].
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Since the dimension of the NLP problem in CP is much greater
than in CVP, this paper focuses on the CVP method. Usually, the
solution quality of CVP method greatly depends on the discretiza-
tion level, accurate solutions require fine discretization. However,
a very fine discretization may  make the discretized NLP problem
become very large scale and/or ill-conditioned [19,20]. Hence, there
rises a question to select the optimal discretization level which bal-
ances the computational cost due to the number of parameters with
the desired approximation quality.

One possible way is the optimization of the discretization grid
points. For example, Teo et al. [24–26] presented the well-known
time-scaling technique to optimize the original time points, where
the length of the time intervals are regarded as additional deci-
sion variables. This method is very efficient for bang–bang control
problems and has been widely used. While, there is a drawback
that the discretization NLP problem will be more complex and dif-
ficult to solve [20]. Another possible way is the refinement of the
discretization mesh. For instance, Schlegel et al. [20] employed the
fast wavelet transformation and the resulting control representa-
tions in wavelet space for grid refinement. García et al. [27] applied
a refinement to all positions in the time grid by halving the step
size from previous refinement iteration until the stopping criteria
were fulfilled. Hadiyanto et al. [19] proposed a sensitivity-based
step size refinement method to improve the product quality of bak-
ing optimization. Bittner et al. [28] presented an automatic density
function-based mesh refinement algorithm (DENMRA) for aircraft
trajectory optimization problem.

Since the solution of CVP method greatly depends on the chosen
discretization level of time grid, a new slope analysis is proposed
to analyze the relationship between the control parameters and
time grid, results show that low slope points have less effect on
the improvement of performance index and can be regarded as
unnecessary nodes, while high ones are important points. Based
on this, a novel slope analysis-based time grid refinement method
is therfore proposed to select optimal time grid nodes so as to
obtain high-quality solution for biochemical dynamic optimization
problems with a small number of parameters and low computa-
tional cost. To limit the computational effort, the proposed method
starts with a coarse discretization level for the control input, the
coresponding time grid nodes are then automatically refined by
subdividing the high slope nodes and/or excluding the low ones.
With this refinement, optimization is continued for a selected group
of input parameters in successive iterations. The proposed method
is applied in three well-known biochemical dynamic optimization
systems to verify the efficiency of the proposed method.

This paper is structured as follows. The statement of biochem-
ical dynamic optimization problem is discussed in Section 2 and
the uniform discretization-based control vector parameterization
is presented in Section 3. Resolution of the time grid is discussed
in Section 4 and the non-uniform adaptive time grid refinement
procedure is presented in Section 5. Section 6 outlines the imple-
mentation of the proposed approach, and the simulation results are
discussed in Section 7. Finally, the conclusion is drawn in Section
8.

2. Statement of dynamic optimization problem

A class of typical biochemical dynamic optimization problems
can be stated as the following Bolza form:

2.1. Problem (P1)

min
u(t)

J(x(t), u(t)) = ˚0(x(tf ), tf ) +
∫ tf

t0

L0(u(t), x(t), t)dt (1)

Subject to:

ẋ(t) = f [u(t), x(t), t]

E[x0(t0), t0, x(tf ), tf ] = 0

C[t, x(t|u), u(t)] ≥ 0

t0 ≤ t ≤ tf

u ≤ u(t) ≤ ū

(2)

where x(t) is an (n × 1) state vector, u(t) is an (m × 1) control vector,
J(x(t), u(t)) is the performance index and consists of the perfor-
mance of the function ˚0(x(tf ), tf ) at the terminal time tf and
the performance of function

∫ tf

t0
L0(u(t), x(t), t)dt during t ∈ [t0, tf ].

f [u(t), x(t), t] is the differential equation of dynamic system. The
boundary conditions are E[x0(t0), t0, x(tf ), tf ] and the path con-
straints are C[t, x(t|u), u(t)]. u and ū are the lower and upper
bounds on u(t), respectively. The objective of this problem is to find
optimal profile u(t) that minimizes J(x(t), u(t)) during t ∈ [t0, tf ].

3. Uniform discretization-based control vector
parameterization

The idea of control vector parameterization is to discretize and
approximate the control vector by a basis function with a limited
number of parameters [29,30]. Then a low order B-spline function
(for instance piecewise constant function) can be used to represent
the control vector.

Firstly, partition the time horizon [t0, tf ] into N even stages
[tk−1, tk], k = 1, 2, · · ·,  N, called time grid,

t0 = t0 < t1 < t2 < . . . < tN = tf (3)

where tk is the time grid node. Next, the control vector can be
expressed as

u(t) ≈ ũN(t) =
N∑

k=1

�k�[t
k−1

,t
k
)(t) (4)

where u ≤ �k ≤ ū for k = 1, . . .,  N and �[t
k−1

,t
k
) is defined as

�[t
k−1

,t
k
)(t) =

{
1, ift ∈ [t

k−1, t
k
)

0, ift /∈ [t
k−1, t

k
)

,  k = 1, 2, ..., N. (5)

By using the piecewise-constant basis function, the control vec-
tor u(t) in time stage [t

k−1, t
k
) is approximated as follows:

u(t) ≈ ũN(t) = �k, t ∈ [tk−1, tk), k = 1, 2, ..., N. (6)

Although Eq. (6) does not define the value of ũN(t) at t = tf , it
does not affect the evolution of the state trajectory [31].

Through this approximate method, the original Problem (P1) is
transformed into a finite-dimensional NLP problem.

3.1. Problem (P2)

min
�

J = ˚0[x(tf ), tf ] +
N∑

k=1

∫ tk

tk−1

L0[�k, x(t), t]dt (7)

Subject to:

Subject to:ẋ (t) =
N
�

k=1

∫ tk

tk−1

L0
[
�k, x (t) t

]
dt

E
[
x0 (t0) , t0x

(
tf

)
, tf

]
= 0

N
�

k=1
C(t, x(t|�k), �k)�(tk−1,tk)(t) ≥ 0

u ≤ �k ≤ ū,  k = 1, 2, . . .,  N

(8)
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